链地址法和线性探测法求查找成功与不成功的平均查找长度ASL

一、链地址法在等概率下查找成功和查找不成功的平均查找长度:

题目

将关键字序列{1 13 12 34 38 33 27 22} 散列存储到散列表中。散列函数为:H(key)=key mod 11,处理冲突采用链地址法,求在等概率下查找成功和查找不成功的平均查找长度

1mod11=1,所以数据1是属于地址1
13mod11=2,所以数据13是属于地址2
12mod11=1,所以数据12也是属于地址1(这个数据是数据1指针的另一个新数据)
34mod11=1,所以数据34是属于地址1(这个数据是数据12指针的另一个新数据)
38mod11=5,所以数据38是属于地址5
33mod11=0,所以数据33是属于地址0
27mod11=5,所以数据27是属于地址5,(这个数据是数据38指针的另一个新数据)
22mod11=0,所以数据22是属于地址0,(这个数据是数据33指针的另一个新数据)

链地址法处理冲突构造所得的哈希表如下:
链地址法

查找成功时: ASL=(3×1+2×3+1×4)/8=13/8, 其中红色标记为查找次数。也就是说,需查找1次找到的有4个,其它以此类推…

查找不成功时:ASL=(3+4+2+1+1+3+1+1+1+1+1)/11=19/11;或者 ASL=(7×1+1×2+2×3+1×4 )/11=19/11,其中红色标记为查找次数。以第一个3为例,其对应于0地址位,确定查找不成功需比较3次,其它以此类推…

原理:

链地址法插入数据的时候采用采用头插法(插入每个链表的表头),因为习惯默认新插入进来的数据,马上就要访问到。下边是实现的伪代码

CHAINED-HASH-INSERT(T, x)
    insert x at the head of list T[h(key[x])]
CHAINED-HASH-SEARCH(T, k)
    search for an element with key k in list T[h(k)]
CHAINED-HASH-DELETE(T, x)
     delete x from the list T[h(key[x])]
例子

例如,查找16的时候,根据散列函数在地址为5的链表查找,首先找到27,再找到38,然后找到38的后继节点为空,查找结束。查找结果失败,共查找3次。

二,线性探测再散列法处理冲突

对于这部分,个人觉得有人整理的比较好,很有条理,很清晰,可以借鉴一下,链接如下:
线性探测再散列法处理冲突

  • 69
    点赞
  • 193
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 21
    评论
1.对于二叉排序树,下面的说( )是正确的。 A.二叉排序树是动态树表,查找成功时插入新结点时,会引起树的重新分裂和组合 B.对二叉排序树进行层序遍历可得到有序序列 C.用逐点插入构造二叉排序树时,若先后插入的关键字有序,二叉排序树的深度最大 D.在二叉排序树中进行查找,关键字的比较次数不超过结点数的1/2 2.在有n个结点且为完全二叉树的二叉排序树中查找一个键值,其平均比较次数的数量级为( )。 A.O(n) B.O(log2n) C.O(n*log2n) D.O(n2) 3.静态查找与动态查找的根本区别在于( )。 A. 它们的逻辑结构不一样 B. 施加在其上的操作不同 C. 所包含的数据元素类型不一样 D. 存储实现不一样 4.已知一个有序表为{12,18,24,35,47,50,62,83,90,115,134},当折半查找值为90的元素时,经过( )次比较后查找成功。 A.2 B.3 C.4 D.5 5.已知数据序列为(34,76,45,18,26,54,92,65),按照依次插入结点的方生成一棵二叉排序树,则该树的深度为( )。 A. 4 B. 5 C. 6 D. 7 6.设散列表表长m=14,散列函数H(k)=k mod 11 。表中已有15,38,61,84四个元素,如果用线性探测法处理冲突,则元素49的存储地址是( )。 A. 8 B. 3 C. 5 D. 9 7. 平衡二叉树的查找效率呈( )数量级。 A. 常数阶 B. 线性阶 C. 对数阶 D. 平方阶 8. 设输入序列为{20,11,12,…},构造一棵平衡二叉树,当插入值为12的结点时发生了不平衡,则应该进行的平衡旋转是( )。 A. LL B. LR C. RL D. RR 二、填空题(每空3分,共24分)。 1.在有序表A[1..18]中,采用二分查找查找元素值等于A[7]的元素,所比较过的元素的下标依次为 。 2.利用逐点插入建立序列(61,75,44,99,77,30,36,45)对应的二叉排序树以后,查找元素36要进行 次元素间的比较,查找序列为 。 3. 用顺序查找长度为n的线性表中进行查找,在等概率情况下,查找成功平均比较次数是 。 4. 二分查找描述如下: intSearch_Bin(SST ST, KT key) { low=1 ; high=ST. length; while(low<=high) { mid=(low+high)/2; if(key==ST.elem[mid].key) return mid; else if(key<ST.elem[mid].key) ; else ; } return 0; } 5.式二叉树的定义如下: typedef struct Btn{ TElemType data; ; }BTN ,*BT; 6.在有n个叶子结点的哈夫曼树中,总结点数是 。 三、综合题(共52分)。 1. (共12分)假定关键字输入序列为19,21,47,32,8,23,41,45,40,画出建立二叉平衡树的过程。 2. (共15分)有关键字{13,28,31,15,49,36,22,50,35,18,48,20},Hash 函数为H=key mod 13,冲突解决策略为地址,请构造Hash表(12分),并计算平均查找长度(3分)。 ASL= 3. (共10分)设关键字码序列{20,35,40,15,30,25},给出平衡二叉树的构造过程。 4. (共15分)设哈希表长为m=13,散列函数为H(k)=k mod 11,关键字序列为5,7,16,12,11,21,31,51,17,81;试散列后的表中关键字分布(假定解决冲突的方线性探测散列);平均查找长度ASL;计算该表的装填因子。 (1)按要哈希表(10分): 0 1 2 3 4 5 6 7 8 9 10 11 12 (2)计算ASL(3分): ASL= (3)计算装填因子(2分):装填因子=
### 回答1: 1. 线性探测法:当哈希函数给出的地址已被占用时,向后依次探测下一个地址是否为空,直到找到空地址或者遍历完整个哈希表。 如果找到空地址,就将该键值存储到该地址;如果遍历完整个哈希表还未找到空地址,则需要重新开始从哈希表的头部开始探测地址。 2. 地址:将哈希表的每个地址看做一个表,将哈希函数映射到的同一个地址的键值都存储在同一个表中。当哈希函数给出的地址已被占用时,将新的键值插入到该地址对应的表尾部即可。 在构造哈希表时,需要根据给定的关键字序列以及哈希函数(h(k)=3k mod 11),依次将关键字映射到哈希表中。对于给定的关键字序列(32,13,49,24,38,21,4,12),可以得到以下哈希表: 0: 1:13,38 2:49 3:21 4:4 5: 6:12,24 7: 8:32 9: 10: 平均查找长度ASL(Average Search Length)指的是在哈希表中查找某个关键字所需要的平均探测次数,ASL可以通过以下公式计算: ASL = (查找成功时所有关键字探测次数之和 + 查找失败时所有可能查找探测次数之和) / 关键字总数 对于以上哈希表,ASL为(1 + 2 + 1 + 1 + 1 + 1 + 1 + 2) / 8 = 1.5。 在查找某个关键字时,需要根据哈希函数找到该关键字在哈希表中对应的地址,然后在该地址对应的表中查找该关键字。如果在表中找到了该关键字,则查找成功;否则查找失败。 其中,查找成功时的平均查找长度ASLsucc指的是在哈希表中查找已经存在的关键字所需要的平均探测次数;查找失败时的平均查找长度ASLunsucc指的是在哈希表中查找不存在的关键字(即查找失败)时,需要经过平均多少个哈希地址才能找到一个空闲地址。一个成功查找操作的概率为P,一个查找失败的概率为1-P,平均查找长度可以通过以下公式计算: ASLsucc = (所有成功查找操作中所有关键字探测次数之和) / 所有成功查找次数 ASLunsucc = (所有查找失败的操作中所有可能查找探测次数之和) / 所有查找失败的次数 其中,一个成功的操作的概率可以通过该关键字在哈希表中出现的频率计算得出,即P=k/n,其中k表示哈希表中该关键字出现的次数,n表示哈希表中关键字的总数。一个失败的操作的概率为1-P。 ### 回答2: 哈希表是一种非常常用的数据结构,可用于高效地进行数据的插入、查找和删除等操作。在实际应用中,哈希函数的选取以及冲突解决方式的选择都会对哈希表的性能产生重要影响。 对于给定的哈希函数h(k)=3k mod 11,哈希地址空间为0~10,关键字序列为32、13、49、24、38、21、4、12,我们可以采用两种不同的冲突解决方来构造哈希表,分别是线性探测法地址。 1. 线性探测法线性探测法中,当哈希函数h(k)计算出冲突位置i时,若该位置已被占用,则沿着哈希表依次往后探测,直到找到一个空闲位置j(j≠i)为止。若整张哈希表已被占满,则返回原位置i。 对于给定的关键字序列,我们可以按照如下步骤构造哈希表: 1) 初始化一个大小为11的哈希表,全部赋值为空。 2) 依次插入关键字序列中的每个元素。 3) 对于经过哈希函数h(k)计算出的位置i,若该位置已被占用,则沿着哈希表依次往后探测,直到找到一个空闲位置j(j≠i)为止。若整张哈希表已被占满,则返回原位置i。 根据上述步骤,我们可以得到如下的哈希表: 0 1 2 3 4 5 6 7 8 9 10 13 32 49 21 4 12 24 38 为了出等概率下查找成功时的平均查找长度aslsucc,我们可以从哈希表中查找每个元素,并平均查找长度。由于哈希函数h(k)是等概率的,因此每个元素在哈希表中的等概率位置也是等概率的。因此,对于一个元素,它在哈希表中的查找长度可以看作是一个二项分布的随机变量,平均查找长度aslsucc可以按照如下公式计算: aslsucc = Σi=1n (成功查找到关键字i的次数 × 成功查找到关键字i时的查找长度) / n 其中,n为关键字序列中元素的数量。根据上述公式,我们可以得到如下计算过程: aslsucc = (1/8×1+1/8×2+1/8×1+1/8×3+1/8×2+1/8×1+1/8×1+1/8×2) = 1.75 即在线性探测法构造的哈希表中,查找成功平均需要查找1.75个位置。 为了出等概率下查找失败时的平均查找长度aslunsucc,我们可以从哈希表中查找一些不存在的元素,并平均查找长度。由于在线性探测法中,查找失败时需要一直沿着哈希表探测直到找到空位置为止,因此在查找失败时,平均查找长度始终为哈希表中的空闲位置数量。因此,在此例中,查找失败时平均需要查找3个位置。 2. 地址地址中,哈希表中的每个位置都是一个表的头结点,当哈希函数计算出冲突位置i时,将新元素插入到表头结点i的后面即可。 对于给定的关键字序列,我们可以按照如下步骤构造哈希表: 1) 初始化一个大小为11的哈希表,全部赋值为空。 2) 依次插入关键字序列中的每个元素,插入时将其添加到哈希表中对应位置的表中。 根据上述步骤,我们可以得到如下的哈希表: 0 -> 1 -> 13 -> 21 -> 2 -> 3 -> 32 -> 4 -> 4 -> 24 -> 5 -> 38 -> 6 -> 7 -> 8 -> 9 -> 10-> 49 -> 12 -> 为了出等概率下查找成功时的平均查找长度aslsucc,我们只需要在哈希表中查找每个元素,并平均查找长度。由于地址可以避免冲突,每个元素在哈希表中只有一个可能位置,因此查找成功时的平均查找长度与哈希表的填装因子有关。在此例中,哈希表的填装因子为8/11。因此,查找成功平均需要查找1.818个位置。 为了出等概率下查找失败时的平均查找长度aslunsucc,在地址查找失败时总是查找表的末尾,因此平均查找长度为哈希表中每个位置表的平均长度。在此例中,哈希表中表的平均长度为8/11,因此查找失败时平均需要查找0.727个位置。 综上所述,对于本文提到的哈希函数h(k)=3k mod 11,哈希地址空间为0~10,关键字序列为32、13、49、24、38、21、4、12,线性探测法地址查找成功/失败时平均查找长度如下表所示: | 线性探测法 | 地址 | ----|-------------|-----------| 成功 | 1.75 | 1.818 | 失败 | 3 | 0.727 | ### 回答3: 线性探测法的哈希表构造过程如下: 1. 初始化哈希表,将每个位置都设为“空”。 2. 将第一个关键字32插入哈希表中,根据哈希函数h(32)=3*32 mod 11=10,将其直接插入哈希表中的10位置。 3. 将第二个关键字13插入哈希表中,根据哈希函数h(13)=3*13 mod 11=6,将其插入哈希表中的6位置。 4. 将第三个关键字49插入哈希表中,根据哈希函数h(49)=3*49 mod 11=5,该位置已经有关键字13,发生了冲突。由于哈希地址空间为0~10,因此使用“线性探测法”从下一个位置开始查找。 5. 查找下一个位置,即h(49)+1=6+1=7,发现该位置为空,将49插入该位置。 6. 将第四个关键字24插入哈希表中,根据哈希函数h(24)=3*24 mod 11=9,将其直接插入哈希表中的9位置。 7. 将第五个关键字38插入哈希表中,根据哈希函数h(38)=3*38 mod 11=4,该位置已经有关键字13和49,发生了冲突。从下一个位置h(38)+1=5开始查找,发现位置5已经被关键字49占用,继续查找下一个位置h(38)+2=6,发现位置6已经被关键字13占用,继续查找下一个位置h(38)+3=7,发现该位置为空,将38插入该位置。 8. 将第六个关键字21插入哈希表中,根据哈希函数h(21)=3*21 mod 11=8,将其插入哈希表中的8位置。 9. 将第七个关键字4插入哈希表中,根据哈希函数h(4)=3*4 mod 11=1,将其直接插入哈希表中的1位置。 10. 将最后一个关键字12插入哈希表中,根据哈希函数h(12)=3*12 mod 11=3,将其直接插入哈希表中的3位置。 线性探测法的哈希表如下: | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10| |:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:| | | 4 | |12 |38 |49 |13 |21 |32 |24 | | 等概率下查找成功时的平均查找长度asl_succ计算方如下: asl_succ=Σ(di+1)/n 其中,di为第i个关键字所需查找的次数。n为关键字个数。 查找关键字21的过程如下: 1. 根据哈希函数h(21)=3*21 mod 11=8,查找哈希表的第8个位置,发现关键字21就在该位置。 2. 所需查找次数为1。 由于共有8个关键字,因此asl_succ=(1+1+4+1+3+1+2+1)/8=1.875。 等概率下查找失败时的平均查找长度asl_unsucc计算方如下: asl_unsucc=Σ(di+1)/n 其中,di为第i个关键字所需查找的次数。n为哈希地址空间的大小。 根据哈希函数h(k),可以发现同一关键字在哈希表中可能出现的位置数最多为哈希地址空间的大小n。因此,当查找失败时,最多需要查找n次。因此,asl_unsucc=(0+1+2+3+4+5+6+7+8+9+10)/11=5。 地址的哈希表构造过程如下: 1. 初始化哈希表,将每个位置都设为“空”。 2. 将第一个关键字32插入哈希表中,根据哈希函数h(32)=3*32 mod 11=10,将其插入哈希表中的第10个位置。 3. 将第二个关键字13插入哈希表中,根据哈希函数h(13)=3*13 mod 11=6,将其插入哈希表中的第6个位置。 4. 将第三个关键字49插入哈希表中,根据哈希函数h(49)=3*49 mod 11=5,将其插入哈希表中的第5个位置。 5. 将第四个关键字24插入哈希表中,根据哈希函数h(24)=3*24 mod 11=9,将其插入哈希表中的第9个位置。 6. 将第五个关键字38插入哈希表中,根据哈希函数h(38)=3*38 mod 11=4,将其插入哈希表中的第4个位置。 7. 将第六个关键字21插入哈希表中,根据哈希函数h(21)=3*21 mod 11=8,将其插入哈希表中的第8个位置。 8. 将第七个关键字4插入哈希表中,根据哈希函数h(4)=3*4 mod 11=1,将其插入哈希表中的第1个位置。 9. 将最后一个关键字12插入哈希表中,根据哈希函数h(12)=3*12 mod 11=3,将其插入哈希表中的第3个位置。 地址的哈希表如下: | 0 | | | 1 | | 5 | 6 | 8 |10 | 9 | | |:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:| | | |12 | 4 | |38 |13 |21 |32 |24 |49 | 等概率下查找成功时的平均查找长度asl_succ计算方如下: 使用地址查找关键字21的过程如下: 1. 根据哈希函数h(21)=3*21 mod 11=8,查找哈希表中第8个位置对应的表,发现关键字21在该表中。 2. 所需查找次数为1。 由于共有8个关键字,因此asl_succ=(1+1+2+1+1+1+1+1)/8=1.25。 等概率下查找失败时的平均查找长度asl_unsucc计算方线性探测法相同,因此为5。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 21
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

丽娃河畔

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值