1 城市计算的概念和框架
1.1 城市计算的定义
城市计算是一个通过不断获取、整合和分析城市中多种异构大数据来解决城市所面临的挑战(如环境恶化、交通拥堵、能耗增加、规划落后等)的过程。
1.2 城市计算的框架
基本框架包括 城市感知和数据获取——城市数据管理——城市数据分析——服务提供 四个环节
城市计算是一个多数据多任务的系统。
1.3 城市计算的核心问题
1)城市感知(计算)。利用城市中现有的资源不断自动感知城市的韵律。人作为传感器参与到城市感知过程(亦称为群体感知)。城市感知不再只是感知的过程,也包含能够从复杂、隐晦、缺失和非均匀分布的数据中获取有效知识的计算环节。
2)海量异构数据的管理。如何管理和整合大规模的异构数据是一大难题。尤其是在一个应用中使用多种数据时,只有提前建立起不同数据之间的关联,才能让后面的分析和挖掘过程变得高效、可行。
3)异构数据的协同计算
传统的机器学习往往只能基于单一数据。在城市计算的很多应用中效果并不理想。在保证知识提取深度的同时,如何提高对大数据的分析效率,以满足城市计算中众多实时性要求较高的应用也是一个难题。数据维度的增加也容易导致数据稀疏性问题。
4)虚实结合的混合式模式。比如云加端模式。
1.4 城市计算的应用分类
城市计算主要涉及但不限于的7类应用:城市规划、智能交通、城市环境、城市能耗、城市经