TensorFlow 入门 | (一)基本知识详解

本文详细介绍了TensorFlow的基本知识,包括数据流图的优势、张量的概念和类型、变量的创建与使用、操作的分类以及占位符和会话的运用。通过这些内容,读者可以对TensorFlow有一个初步的理解。
摘要由CSDN通过智能技术生成

本文介绍TensorFlow的基本知识

一、TensorFlow 的认识
先来看下TensorFlow模块和一些APIs,简单了解一下
在这里插入图片描述
TensorFlow数据流图
一种声明式编程方式,不同于命令式编程。不拘泥于内部具体的实现过程,而是模型化,结构化。两种编程方式的具体细节可自行百度。
TensorFlow数据流图如下所示,如果学过图论的话很很容易理解,最主要的两个概念就是“边”和“节点”
在这里插入图片描述
TensorFlow 数据流图的优势有以下几点:

  • 并行计算快
  • 分布式计算快
  • 预编译优化
  • 可移植性好

二、TensorFlow 张量

张量概念是矢量概念的推广,矢量是一阶张量。张量是一个可以用来表示在一些矢量、标量和其他张量之间的线性关系的多线性函数。在数学里,张量是一种几何实体,广义上表示任意形势的“数据”

0阶张量就是标量,一阶张量是向量,二阶张量是矩阵……。张量的阶描述它表示数据的最大维度。
在这里插入图片描述
在TensorFlow中,张量(Tensor)表示某种相同数据类型多维数组
1. 数据类型(e.g.:float、int、string)
2. 数组形状(各个维度的大小)

所以张量到底是什么?

  • 张量是用来表示多维数组的
  • 张量是执行操作时的输入和输出数据
  • 用户通过执行操作来创建或计算张量
  • 张量的形状不一定在编译时确定,可以在运行时通过形状推断计算得出。

在TensorFlow中,有几类特别的张量,由如下操作产生:
• tf.constant //常量, 不会随计算过程变化
• tf.placeholder //占位符,可以简单理解为描述一个数据的壳,只有当数据流图外的数据填充进来/赋值时才有值,或者也可以覆盖掉之前的值。不同于常量那种固定不变的值。

三、TensorFlow 变量

TensorFlow变量(Variable)的主要作用是维护特定节点的状态,如深度学习或机器学习的模型参数。

比如神经网络中的权重W和偏置b

tf.Variable 方法是操作,返回值是变量(特殊张量

通过tf.Variable方法创建的变量,与张量一样,可以作为操作的输出和输入。不同之处在于:

  • 张量的生命周期通常随依赖的计算完成而结束,内存也随即释放。
  • 变量则常驻内存,在每一步训练时不断更新其值,以实现模型参数的更新。

创建TensorFlow变量方式如下

import tensorflow 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值