MNIST数据集加载的问题&方法

使用 Keras 加载 MNIST 数据集

tf.kera.datasets.mnist.load_data(path=‘mnist.npz’)

Arguments:

  • path: 本地缓存 MNIST 数据集(mnist.npz)的相对路径(~/.keras/datasets)

Returns:

Tuple of Numpy arrays: `(x_train, y_train), (x_test, y_test)`.

此方法加载的数据集在相对路径下,下载之后可以复制到你的工作目录下。
参考我的代码

from keras.datasets import mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data('mnist/mnist.npz')
# 我把数据集放在了当前目录的mnist目录下(mnist.npz)
详情查看 mnist.load_data API 文档

.
(因为数据集路径问题也可能会导致无法加载的问题)

如果用Keras不能加载数据集,有以下几个办法可以试一试

(一)尝试把mnist.load_data()的参数删掉;
如果不行,执行一条命令mnist.__file__(输出文件位置的命令),之后再用load_data()加载数据集。
用这个的原因是,要输出目录肯定会自动先下载数据集。(应该是这样,也可能解释的不对)

(二)使用 tf.contrib.learn 模块加载 MNIST 数据集

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
# 导入数据
mnist = input_data.read_data_sets('./mnist/dataset/')

此法可行,但是会有警告,因为这个模块现在不维护了。以后也不用了。

(其他)还有修改源代码的等等,可以再去搜搜别家的博客。

发布了29 篇原创文章 · 获赞 6 · 访问量 7915
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览