【算法】Minimum Difficulty of a Job Schedule 工作计划的最低难度-单调栈

Minimum Difficulty of a Job Schedule 工作计划的最低难度-单调栈

问题描述:

分析

单调栈

下标p是j左侧第一个满足job[p]>job[j]

当k>=p ,f{k+1~~ j}最大的就是job[j]
dp [ i ] [ j ] = min ⁡ k = p , p + 1 , … , j − 1 { dp [ i − 1 ] [ k ] + jobDifficulty [ j ] } = min ⁡ k = p , p + 1 , … , j − 1 { dp [ i − 1 ] [ k ] } + jobDifficulty [ j ] \begin{equation} \begin{aligned} \textit{dp}[i][j] =& \min_{k=p,p+1,\dots,j - 1}\{\textit{dp}[i-1][k] + \textit{jobDifficulty}[j]\} \\ =& \min_{k=p,p+1,\dots,j - 1}\{\textit{dp}[i-1][k]\} + \textit{jobDifficulty}[j] \end{aligned} \end{equation} dp[i][j]==k=p,p+1,,j1min{dp[i1][k]+jobDifficulty[j]}k=p,p+1,,j1min{dp[i1][k]}+jobDifficulty[j]
当k<p,f{k+1~~ j}最大的就是job[p]
dp [ i ] [ j ] = min ⁡ k = i − 1 , i , … , p − 1 { dp [ i − 1 ] [ k ] + f ( k + 1 , p ) } = dp [ i ] [ p ] \begin{equation} \begin{aligned} \textit{dp}[i][j] =& \min_{k=i-1,i,\dots,p - 1}\{\textit{dp}[i-1][k] + f(k + 1, p)\} \\ =& \textit{dp}[i][p] \end{aligned} \end{equation} dp[i][j]==k=i1,i,,p1min{dp[i1][k]+f(k+1,p)}dp[i][p]

在DP中,dp[i] [j] = dp[i-1] [k-1]+ f{k~ ~ j}
f{k~ ~ j} 表示这个区间最大的值。
而在寻找max的过程中,最简单的就是遍历过程中进行比较。

但是在遍历过程中,只有当左侧出现较大的元素时,f{}才会变化。
因为 k的范围是[i,j],初始时区域最大值max是job[j].
假设有一个位置p,p>=0 && p<j && job[p]>job[j],
情况1 如果 k >= p
dp[i] [j] = min(dp[i-1] [k]+job[j]) k∈ [p,j-1]
即 dp[i] [j] = min(dp[i-1] [k])+job[j] k ∈ [p,j-1]
job[j] 就是 f{k+1~ ~ ~ j}这个区域的最大值。
情况2 如果 k< p , f{ k+1~ ~ ~j}这个区域的最大值 就是job[p].
此时f{k+1~ ~ ~ j}==f{k+1~ ~ ~p}
dp[i] [j] = min(dp[i-1] [k]+ f{k+1~~~p}) k∈ [i-1,p-1]
dp[i] [j] =dp[i] [p]

所以dp[i] [j] 是有2个情况综合决定的,这2个情况实际上是把原来线性遍历maxjob的过程划分成为2段。假设p已知,那么dp[i] [j], k就需要在[p,j-1]的范围内遍历一遍{目的是为了找最小的dp },而且maxjob是job[j].然后理论上k在[i-1,p-1]范围内也需要遍历,但是情况2中通过变换, 可以直接使用dp[i][p].
到此问题又发生变化,原来的DP框架下枚举k的环节,要调整,而且是找j左侧第一个p&&job[p]>job[j].
很明显这个问题需要单调栈来处理。
如果p<j,但是 job[p]<=job[j],即 满足上面的条件的p不存在,那么就只能暴力的遍历一次dp[i-1] [k],同时dp[i-1] []不一定单调,就必须使用暴力,在暴力处理完成后,dp[i-1] [i-1~~j-1]的区间内最小值也就可以知道了,当j逐渐增大,即使p不存在,也不用全部暴力,只需要把之前记录的最小值拿出来比较,就可以了。
为了处理p,就需要单调递减栈,整个区间会被若干个p划分,p1,p2,p3…,p1> p2> p3,
0~ p1-1,p1~ p2-1,p2~ p3-1,这几个区间的dp[i] []都是相同的。即 以pi为分割,p(i-1)~pi-1 ==> val(i).
要计算dp[i] [j],首先就是枚举mx = dp[i-1] [j-1],
当stack.isEmpty||job[j]<job[p3],说明和上面的思路一样,分2块,因为单调栈的存在,如果栈空了,说明j左侧不存在p,dp[i] [j] = dp[i-1] [j-1]+job[j].如果栈不空,dp[i] [j]= min(dp[i] [stack.top],dp[i-1] [j-1]+job[j]),得到dp[i][j],然后入栈。
为了维护单调栈,当job[stack.top]<=job[j],就要 出栈 同时更新mx,为了增加数据 ,栈的每个元素以[pi,dp[i] [] ]的形式入栈。

能想到单调栈这个思路的人,也是个狠人。你能想到,但是不一定能用的灵活。

时间复杂度 O(Nd)
空间复杂度: O(N)

代码

public int minDifficulty(int[] jobDifficulty, int d) {
        int n = jobDifficulty.length;
        if (n < d) {
            return -1;
        }
        int[][] dp = new int[d][n];
        for (int j = 0, ma = 0; j < n; ++j) {
            ma = Math.max(ma, jobDifficulty[j]);
            dp[0][j] = ma;
        }
        for (int i = 1; i < d; ++i) {
            Deque<int[]> stack = new ArrayDeque<int[]>();
            for (int j = i; j < n; ++j) {
                int mi = dp[i - 1][j - 1];
                while (!stack.isEmpty() && jobDifficulty[stack.peek()[0]] <= jobDifficulty[j]) {
                    mi = Math.min(mi, stack.pop()[1]);
                }
                if (stack.isEmpty()) {
                    dp[i][j] = mi + jobDifficulty[j];
                } else {
                    dp[i][j] = Math.min(dp[i][stack.peek()[0]], mi + jobDifficulty[j]);
                }
                stack.push(new int[]{j, mi});
            }
        }
        return dp[d - 1][n - 1];
    }

单调栈 填坑

Tag

Array Dynamic Programming

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Eric.Cui

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值