Minimum Cost Tree From Leaf Values 叶值的最小代价生成树
问题描述:
给你一个正整数数组 arr,考虑所有满足以下条件的二叉树:
每个节点都有 0 个或是 2 个子节点。
数组 arr 中的值与树的中序遍历中每个叶节点的值一一对应。
每个非叶节点的值等于其左子树和右子树中叶节点的最大值的乘积。
在所有这样的二叉树中,返回每个非叶节点的值的最小可能总和。这个和的值是一个 32 位整数。
如果一个节点有 0 个子节点,那么该节点为叶节点。
arr.length 范围[2,40], arr[i] 范围[1,15],最终结果不超过2^31
分析
节点的数量限制在[2,40],节点值范围在[1,15]
arr中的每个元素都是树的leaf,非叶子节点的值是由leftchildmax和rightchildmax的乘积得到的。
而要求的生成树的代价,则是所有非叶子节点的累加和。
同时要求arr的顺序和生成树的inorder一致。
暴力的思路就是枚举所有可能的子树。数据的范围不大理论上可以。
如果用
f
[
i
]
[
j
]
f[i][j]
f[i][j]表示 区间i~j生成树的最小代价,那么状态转移就是
f
[
i
]
[
j
]
=
m
i
n
(
f
[
i
]
[
k
]
+
f
[
k
+
1
]
[
j
]
+
C
)
,
i
=
<
k
<
=
j
−
1
f[i][j] =min( f[i][k] + f[k+1][j]+ C), i=<k<=j-1
f[i][j]=min(f[i][k]+f[k+1][j]+C),i=<k<=j−1, C 表示 i ~ k的最大值a,k+1 ~ j的最大值b,C = a*b;
很明显
f
[
i
]
[
j
]
=
0
f[i][j] = 0
f[i][j]=0,同时还需要维护一个记录区间最大值的矩阵,可以快速得到C。
时间复杂度O(
N
3
N^{3}
N3)
如果使用另一个角度思考,如何构造一个代价最小的生成树,就有点接近哈夫曼树的思维。
对于一个叶子a[i],它的父节点fa的产生,只有2个选择,
a
[
i
]
a[i]
a[i]与a[0 ~ i-1]的max乘积,或者是a[i]与a[i+1 ~ n-1]的max乘积。
如果a[i]是一个较大的值,那么要使得0 ~ i的生成树代价最小,a[i]就应该尽可能的靠近root[0 ~ i]的根部,这样产生的生成树代价,一定不会大于a[i]距离根部较远的生成树。
也就是说,a[i]如果较小,它应该优先用来构建子树,这样a[i]距离根部较远,a[i]应该与左边的还是右边的构建子树,因为先参与构建的节点,最后一定是距离根部远的,那么这个节点会在子树的区间逐渐变大的过程中,可能参与其他非叶子节点的构建,所以应该选择a[i] 两侧中,还为参与构建的最小叶子结点,同时要满足a[i]是<=2侧节点。
所以使用单调递减栈。
代码
public int mctFromLeafValues(int[] arr) {
int n = arr.length;
int[][] m = new int[n+1][n+1];//0~n
// f[i][j] =f[i][k]+f[k+1][j]+m[i][k]*m[k+1][j]
int[][] f = new int[n+1][n+1];
// 非叶子节点的sum
int INF = Integer.MAX_VALUE>>1;
for(int i = 0;i<n;i++){
Arrays.fill(f[i],INF);
}
for(int len=1;len<=n;len++){
for(int i = 0;i<n;i++){
m[i][i] = arr[i];
f[i][i]=0;
int j = len+i-1;
if(j>=n) break;
int tmp = INF,mt = 0;
for(int k = i;k+1<=j;k++){
mt = Math.max(mt,Math.max(m[k+1][j],m[i][k]));
int c = m[i][k]*m[k+1][j];
int p =f[i][k]+f[k+1][j]+c;
tmp = Math.min(tmp,p);
}
m[i][j] = Math.max(mt,m[i][j]);
f[i][j] = Math.min(tmp,f[i][j]);
}
}
return f[0][n-1];
}
时间复杂度 O( N 3 N^{3} N3) 空间复杂度: O( N 2 N^{2} N2)
单调栈
public int mctFromLeafValues(int[] arr) {
int res = 0;
Deque<Integer> stk = new ArrayDeque<Integer>();
for (int x : arr) {
while (!stk.isEmpty() && stk.peek() <= x) {
int y = stk.pop();
if (stk.isEmpty() || stk.peek() > x) {
res += y * x;
} else {
res += stk.peek() * y;
}
}
stk.push(x);
}
while (stk.size() >= 2) {
int x = stk.pop();
res += stk.peek() * x;
}
return res;
}
时间复杂度 O(N) 空间复杂度: O(N)
Tag
Array
Dynamic Programming
Monotonic Stack