LeetCode 1130 叶值的最小代价生成树
题目
给你一个正整数数组 arr
,考虑所有满足以下条件的二叉树:
-
每个节点都有 0 个或是 2 个子节点。
-
数组
arr
中的值与树的中序遍历中每个叶节点的值一一对应。(知识回顾:如果一个节点有 0 个子节点,那么该节点为叶节点。) -
每个非叶节点的值等于其左子树和右子树中叶节点的最大值的乘积。
在所有这样的二叉树中,返回每个非叶节点的值的最小可能总和。这个和的值是一个 32 位整数。
输入:arr = [6,2,4]
输出:32
解释:
有两种可能的树,第一种的非叶节点的总和为 36,第二种非叶节点的总和为 32。
24 24
/ \ / \
12 4 6 8
/ \ / \
6 2 2 4
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/minimum-cost-tree-from-leaf-values
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
思路
区间DP,定义dp(i, j)
为数组从i
到j
区间生成二叉树非叶子结点的最小可能总和,那么有
d
p
[
i
]
[
j
]
=
min
i
≤
k
≤
j
{
d
p
[
i
]
[
k
]
+
d
p
[
k
]
[
j
]
+
max
i
≤
p
≤
k
n
o
d
e
[
p
]
⋅
max
k
≤
q
≤
j
n
o
d
e
[
q
]
}
dp[i][j] = \min_{i\le k\le j}\left\{dp[i][k] + dp[k][j] + \max_{i\le p\le k} node[p] \cdot\max_{k\le q\le j}node[q] \right\}
dp[i][j]=i≤k≤jmin{dp[i][k]+dp[k][j]+i≤p≤kmaxnode[p]⋅k≤q≤jmaxnode[q]}
即要保留左子树区间和右子树区间的最小值的同时,加上新生成的根结点的值。根结点的值是左子树和右子树结点最大值的乘积。
那么可以采用记忆话递归的思路,首先定义备忘路数组
m
e
m
o
[
i
]
[
j
]
[
0
]
memo[i][j][0]
memo[i][j][0] 表示区间内二叉树的最小总和memo[i][j][1]
表示区间内结点的最大值。
代码如下
int memo[45][45][2];
class Solution {
public:
int mctFromLeafValues(vector<int>& arr) {
memset(memo, -1, sizeof(memo));
int ret = dp(0, arr.size() - 1, arr);
return ret;
}
int dp(int i, int j, vector<int> &arr){
if(memo[i][j][0] != -1) return memo[i][j][0];
if (i > j){
memo[i][j][0] = 0;
memo[i][j][1] = 0;
return memo[i][j][0];
}
if (i == j){
memo[i][j][0] = 0;
memo[i][j][1] = arr[i];
return memo[i][j][0];
}
if(i + 1 == j){
memo[i][j][0] = arr[i] * arr[j];
memo[i][j][1] = max(arr[i], arr[j]);
return memo[i][j][0];
}
int ret = dp(i + 1, j, arr) + arr[i] * memo[i + 1][j][1];
memo[i][j][1] = max(arr[i], memo[i + 1][j][1]);
if (dp(i, j - 1, arr) + arr[j] * memo[i][j - 1][1] < ret){
ret = dp(i, j - 1, arr) + arr[j] * memo[i][j - 1][1] ;
memo[i][j][1] = max(arr[j], memo[i][j - 1][1]);
}
for (int k = i + 1; k + 1< j; ++k){
int left = dp(i, k, arr), right = dp(k + 1, j , arr);
if (left + right + memo[i][k][1] * memo[k + 1][j][1] < ret){
ret = left + right + memo[i][k][1] * memo[k + 1][j][1];
memo[i][j][1] = max(memo[i][k][1], memo[k + 1][j][1]);
}
}
memo[i][j][0] = ret;
return memo[i][j][0];
}
};