LeetCode 1130 叶值的最小代价生成树

LeetCode 1130 叶值的最小代价生成树

题目

给你一个正整数数组 arr,考虑所有满足以下条件的二叉树:

  • 每个节点都有 0 个或是 2 个子节点。

  • 数组 arr 中的值与树的中序遍历中每个叶节点的值一一对应。(知识回顾:如果一个节点有 0 个子节点,那么该节点为叶节点。)

  • 每个非叶节点的值等于其左子树和右子树中叶节点的最大值的乘积。

在所有这样的二叉树中,返回每个非叶节点的值的最小可能总和。这个和的值是一个 32 位整数。

输入:arr = [6,2,4]
输出:32
解释:
有两种可能的树,第一种的非叶节点的总和为 36,第二种非叶节点的总和为 32。

    24            24
   /  \          /  \
  12   4        6    8
 /  \               / \
6    2             2   4

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/minimum-cost-tree-from-leaf-values
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

思路

区间DP,定义dp(i, j) 为数组从ij区间生成二叉树非叶子结点的最小可能总和,那么有
d p [ i ] [ j ] = min ⁡ i ≤ k ≤ j { d p [ i ] [ k ] + d p [ k ] [ j ] + max ⁡ i ≤ p ≤ k n o d e [ p ] ⋅ max ⁡ k ≤ q ≤ j n o d e [ q ] } dp[i][j] = \min_{i\le k\le j}\left\{dp[i][k] + dp[k][j] + \max_{i\le p\le k} node[p] \cdot\max_{k\le q\le j}node[q] \right\} dp[i][j]=ikjmin{dp[i][k]+dp[k][j]+ipkmaxnode[p]kqjmaxnode[q]}
即要保留左子树区间和右子树区间的最小值的同时,加上新生成的根结点的值。根结点的值是左子树和右子树结点最大值的乘积。

那么可以采用记忆话递归的思路,首先定义备忘路数组 m e m o [ i ] [ j ] [ 0 ] memo[i][j][0] memo[i][j][0] 表示区间内二叉树的最小总和memo[i][j][1] 表示区间内结点的最大值。

代码如下

int memo[45][45][2];

class Solution {
public:
    int mctFromLeafValues(vector<int>& arr) {
        memset(memo, -1, sizeof(memo));
        int ret = dp(0, arr.size() - 1,  arr);
        return ret;
    }

    int dp(int i, int j, vector<int> &arr){

        if(memo[i][j][0] != -1) return memo[i][j][0];
        if (i > j){
            memo[i][j][0] = 0;
            memo[i][j][1] = 0;
            return memo[i][j][0];
        }
        if (i == j){
            memo[i][j][0] = 0;
            memo[i][j][1] = arr[i];
            return memo[i][j][0];
        }
        if(i + 1 == j){
            memo[i][j][0] = arr[i] * arr[j];
            memo[i][j][1] = max(arr[i], arr[j]);
            return memo[i][j][0];
        }
        int ret = dp(i + 1, j, arr) + arr[i] * memo[i + 1][j][1];
        memo[i][j][1] = max(arr[i], memo[i + 1][j][1]);
        if (dp(i, j - 1, arr) + arr[j] * memo[i][j - 1][1] < ret){
            ret = dp(i, j - 1, arr) + arr[j] * memo[i][j - 1][1] ;
            memo[i][j][1] = max(arr[j], memo[i][j - 1][1]);
        }
        for (int k = i + 1; k + 1< j; ++k){
            int left = dp(i, k, arr), right = dp(k + 1, j , arr);
            if (left + right + memo[i][k][1] * memo[k + 1][j][1] < ret){
                ret = left + right + memo[i][k][1] * memo[k + 1][j][1];
                memo[i][j][1] = max(memo[i][k][1], memo[k + 1][j][1]);
            }
        }
        memo[i][j][0] = ret;
        return memo[i][j][0];
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值