Minimum Falling Path Sum II 下降路径最小和 II
问题描述:
给你一个 n x n 整数矩阵 grid ,请你返回 非零偏移下降路径
数字和的最小值。
非零偏移下降路径
定义为:从 grid 数组中的每一行选择一个数字,且按顺序选出来的数字中,相邻数字不在原数组的同一列。
n = = g r i d . l e n g t h = = g r i d [ i ] . l e n g t h 1 < = n < = 200 − 99 < = g r i d [ i ] [ j ] < = 99 n == grid.length == grid[i].length\\ 1 <= n <= 200\\ -99 <= grid[i][j] <= 99 n==grid.length==grid[i].length1<=n<=200−99<=grid[i][j]<=99
分析
实际的目标是要从每一行选一个数,而且相邻的行不能选择同一列,这样的n个数的和是最小的。
如果以暴力计算,第一行可以选择n,第二至第n行,每一行可以选择n-1。
需要枚举的规模就是大概
n
n
n^n
nn.
简单的试图使用暴力的方式是无法解决的。
以问题的描述,一定会存在至少一条和最小的path。
如果在第n行选了一个元素
a
[
n
]
[
i
]
,
a[n][i],
a[n][i],那么这个路径在n-1行就不能选列
i
i
i。但是可以选择
a
[
n
−
1
]
[
k
]
,
k
!
=
i
.
a[n-1][k],k!=i.
a[n−1][k],k!=i.
所以可以利用递归的方式来搜索这个路径。
设定一个递归
d
f
s
(
r
o
w
,
p
r
e
c
o
l
)
dfs(row,precol)
dfs(row,precol),表示在行为
r
o
w
row
row时,行
r
o
w
+
1
row+1
row+1选择列
p
r
e
c
o
l
precol
precol时的最小路径和。
$
d
f
s
(
n
,
p
r
e
c
o
l
)
=
m
i
n
(
d
f
s
(
n
−
1
,
k
)
+
a
[
n
]
[
k
]
)
,
k
!
=
p
r
e
c
o
l
dfs(n,precol) = min(dfs(n-1,k)+a[n][k]), k!=precol
dfs(n,precol)=min(dfs(n−1,k)+a[n][k]),k!=precol
递归的边界,就是
r
o
w
=
=
0
row==0
row==0,需要选择与
r
o
w
=
=
1
row==1
row==1不同列的元素。
以递归搜索这个思路计算的时间复杂度,依然是
O
(
N
N
)
,
O(N^N),
O(NN),所以TLE是必然的。
原因就在于在递归树上,会出现
d
f
s
(
n
,
c
o
l
)
dfs(n,col)
dfs(n,col)的重复计算。
所以记忆化搜索,可以大幅度的减少时间复杂度,理论上可以达到
O
(
N
3
)
O(N^3)
O(N3).
代码
暴力递归
class Solution {
int n,INF;
int[][] g;
public int minFallingPathSum(int[][] grid) {
n = grid.length;
g = grid;
INF = 1<<30;
return dfs(n-1,-1);
}
public int dfs(int row,int precol){
if(row==0){
int res = INF;
for(int i=0;i<n;i++){
if(i!=precol){
res = Math.min(res,g[row][i]);
}
}
return res;
}
int res = INF;
for(int i=0;i<n;i++){
if(i!=precol){
int t = dfs(row-1,i)+g[row][i];
res = Math.min(res,t);
}
}
return res;
}
}
时间复杂度 O ( N N ) O(N^N) O(NN)
空间复杂度 O ( N ) O(N) O(N)
记忆化
class Solution {
int n,INF;
int[][] g,memo;
public int minFallingPathSum(int[][] grid) {
n = grid.length;
g = grid;
INF = 1<<30;
memo = new int[n][n+1];
for(int i=0;i<n;i++) Arrays.fill(memo[i],-1);
return dfs(n-1,-1);
}
public int dfs(int row,int precol){
if(memo[row][precol+1]!=-1){
return memo[row][precol+1];
}
if(row==0){
int res = 100;
for(int i=0;i<n;i++){
if(i!=precol){
res = Math.min(res,g[row][i]);
}
}
return memo[row][precol+1] = res;
}
int res = INF;
for(int i=0;i<n;i++){
if(i!=precol){
int t = dfs(row-1,i)+g[row][i];
res = Math.min(res,t);
}
}
memo[row][precol+1] = res;
return res;
}
}
时间复杂度 O ( N 3 ) O(N^3) O(N3)
空间复杂度 O ( N 2 ) O(N^2) O(N2)
Tag
Matrix
Memory