布隆过滤器使用

介绍

  • 布隆过滤器的优点:
    支持海量数据场景下高效判断元素是否存在
    布隆过滤器存储空间小,并且节省空间,不存储数据本身,仅存储hash结果取模运算后的位标记
    不存储数据本身,比较适合某些保密场景
  • 布隆过滤器的缺点:
    不存储数据本身,所以只能添加但不可删除,因为删掉元素会导致误判率增加
    由于存在hash碰撞,匹配结果如果是“存在于过滤器中”,实际不一定存在
    当容量快满时,hash碰撞的概率变大,插入、查询的错误率也就随之增加了
  • 布隆过滤器中一个元素如果判断结果为存在的时候元素不一定存在,但是判断结果为不存在的时候则一定不存在。因此,布隆过滤器不适合那些对结果必须精准的应用场景。

配置参数初始化

yml配置文件

#验黑服务过滤器配置
black:
  #预估数据量 单位万(w)
  data-quantity: 20000
  #预计错误概率 =  1/(false-rate * 10000)   例:100  表是 1/(100*10000) 概率
  false-rate: 100

配置类设置

@Component
public class BlackFilterConfig {

    private Integer dataQuantity;
    private Integer falseRate;

    @Value("${black.data-quantity:20000}")
    public void setDataQuantity(Integer dataQuantity) {
        this.dataQuantity = dataQuantity;
    }
    @Value("${black.false-rate:100}")
    public void setFalseRate(Integer falseRate) {
        this.falseRate = falseRate;
    }

    public Integer getDataQuantity() {
        return dataQuantity;
    }

    public Integer getFalseRate() {
        return falseRate;
    }

}

初始化创建布隆过滤器

@Component
@Order(value = 1)
public class InitRunner implements CommandLineRunner {

	private static final Logger log = LoggerFactory.getLogger(InitRunner.class);

	@Autowired
	private BlackFilterConfig blackFilterConfig;

    @Override
	public void run(String... args) {
		
    	//初始化黑名单过滤器
 BlackFilterManager.getInstance().createApacheBloomFilter(blackFilterConfig.getDataQuantity(),blackFilterConfig.getFalseRate());

	}

创建工具类

public class BlackFilterManager {

    private static final Logger log = LoggerFactory.getLogger(BlackFilterManager.class);


    /**
     * 判断key在集合中时,有一定的概率key其实不在集合中
     * 返回 true 有可能不存在
     * 返回 false 一定不存在
     */
    private CountingBloomFilter filter = null;

    private static BlackFilterManager instance = new BlackFilterManager();

    private BlackFilterManager(){
    }

    public static BlackFilterManager getInstance(){
        return instance;
    }

    public CountingBloomFilter getFilter() {
        return filter;
    }

    public synchronized void createApacheBloomFilter(Integer dq,Integer fr){
        if (dq == null || fr == null){
            return;
        }
        if (BlackFilterManager.getInstance().filter != null){
            return;
        }

        //求概率 1/(fr * 10000)
        BigDecimal divide = new BigDecimal("1").divide(new BigDecimal(String.valueOf(fr * 10000)),6,BigDecimal.ROUND_HALF_UP);
        float falsePosRate = divide.floatValue();
        log.info("加载过滤器配置[black.false-rate] :{}w | 计算后 1/({} * 10000) = {}",fr,fr,divide);

        //求数据量
        int numMembers =  dq * 10000;
        log.info("加载过滤器配置[black.data-quantity] :{}w | 计算后 {} * 10000 = {}",dq,dq,numMembers);

        int vectorSize = getOptimalBloomFilterSize(numMembers, falsePosRate);
        int nbHash = getOptimalK(numMembers, vectorSize);
        log.info("根据数据预估量:{} | 预定误判概率:{} ======》 得到初始化空间大小:{},Hash函数个数:{}",numMembers,divide,vectorSize,nbHash);

        BlackFilterManager.getInstance().filter = new CountingBloomFilter(vectorSize,nbHash, Hash.MURMUR_HASH);
    }

    private static int getOptimalBloomFilterSize(int numRecords,float falsePosRate) {
        int size = (int) (-numRecords * (float) Math.log(falsePosRate) / Math
                .pow(Math.log(2), 2));
        return size;
    }

    private static int getOptimalK(float numMembers, float vectorSize) {
        return (int) Math.round(vectorSize / numMembers * Math.log(2));
    }


}

使用

  • 添加数据
   key = new Key(("数据").getBytes(StandardCharsets.UTF_8));
   BlackFilterManager.getInstance().getFilter().add(key);
  • 判断数据(true不一定存在,false一定不存在)
 if (BlackFilterManager.getInstance().getFilter().membershipTest(key)) {
                  //业务处理
                }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值