Large scale machine learning - Learning with large datasets

In next few classes, we'll talk about large scale machine learning. That is algorithms that dealing with big datasets.

Motivation

Figure-1

 

We've already seen that one of the best ways to get a high performance machine learning system is if you take a low-bias learning algorithm, and train that on a lot of data. One early example was classifying between confusable words as figure-1. For this example, so long as you feed the algorithms a lot of data, it seems to do very well. This has led to the saying that often it's not who has the best algorithm that wins, it's who has the most data.

Problems of learning with large datasets

Figure-2

Learning with large datasets comes with its own unique problems, specifically, computational problem. As shown in figure-2, it shows the gradient descent rule of linear regression. And it has 100 million examples. This is pretty realistic for many modern datasets. To perform a single step of gradient descent, you need to carry out a summation over 100 million terms. This is expensive. In the next classes, we'll talk about techniques for either replacing this algorithm with something else or to find more efficient ways to compute this derivative. By the end of the classes on large scale machine learning, you'll know how to fit models, linear regression, logistic regression, neural networks and so on, even the datasets have, say, 100 million examples.

High bias or high variance?

Before we put an effort into training a model with 100 million examples, we should ask ourselves, why not just use 1000 examples? Maybe we can randomly pick a subset of 1000 examples out of 100 million examples and train our algorithm on just 1000 examples. So before investing the effort into actually developing the software needed to train these massive models, it is often a good sanity check if training on just 1000 examples might do just as well.

Figure-3

To sanity check that if using a much smaller training set like 1000 might do just as well, the usual method is of plotting the learning curves.

So if you were to plot the learning curves, and if your training objectives J_{train}(\theta ) were to look like the blue line in figure-3. And if your cross validation set objective J_{cv}(\theta ) was look like the red line, then this looks like a high-variance learning algorithm (see http://edwardwangcq.com/advice-for-applying-machine-learning-learning-curves/), and we will be more confident that adding extra training examples would improve performance.

Figure-4

Whereas in contrast, if your learning curves were like that in figure-4. Then this looks like the classical high-bias learning algorithm. Then it seems unlikely that increasing m to 100 million will do much better. And you'd be just fine sticking to m=1000. When you were in such situation, one natural thing to do would be to add extra features or add extra hidden units to your neural network and so on, so that you end up with a situation closer to that of figure-3. This gives you more confidence by trying to add infrastructure to change the algorithm to use much more than a thousand examples. That might actually be a good use of your time.

Next, we'll come up with computationally reasonable ways to deal with very big datasets. We'll see two main ideas: Stochastic Gradient Descent & Map Reduce for dealing with very big datasets.

<end>

内容概要:本文档提供了三种神经网络控制器(NNPC、MRC和NARMA-L2)在机器人手臂模型上性能比较的MATLAB实现代码及详细解释。首先初始化工作空间并设定仿真参数,包括仿真时间和采样时间等。接着定义了机器人手臂的二阶动力学模型参数,并将其转换为离散时间系统。对于参考信号,可以选择方波或正弦波形式。然后分别实现了三种控制器的具体算法:MRC通过定义参考模型参数并训练神经网络来实现控制;NNPC利用预测模型神经网络并结合优化算法求解控制序列;NARMA-L2则通过两个神经网络分别建模f和g函数,进而实现控制律。最后,对三种控制器进行了性能比较,包括计算均方根误差、最大误差、调节时间等指标,并绘制了响应曲线和跟踪误差曲线。此外,还强调了机器人手臂模型参数的一致性和参考信号设置的规范性,提出了常见问题的解决方案以及性能比较的标准化方法。 适合人群:具备一定编程基础,特别是熟悉MATLAB编程语言的研究人员或工程师,以及对神经网络控制理论有一定了解的技术人员。 使用场景及目标:①理解不同类型的神经网络控制器的工作原理;②掌握在MATLAB中实现这些控制器的方法;③学会如何设置合理的参考信号并保证模型参数的一致性;④能够根据具体的性能指标对比不同控制器的效果,从而选择最适合应用场景的控制器。 其他说明:本文档不仅提供了完整的实验代码,还对每个步骤进行了详细的注释,有助于读者更好地理解每段代码的功能。同时,针对可能出现的问题给出了相应的解决办法,确保实验结果的有效性和可靠性。为了使性能比较更加公平合理,文档还介绍了标准化的测试流程和评估标准,这对于进一步研究和应用具有重要的指导意义。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值