The notes when study the Coursera class by Mr. Andrew Ng "Neural Networks & Deep Learning", section 3.9 "Gradient descent for neural networks". It shows the computation graph for NN, how to compute back propagation of NN when there is one and multiple training examples. Share it with you and hope it helps!
————————————————
For an one hidden layer NN as figure-1, its computation graph is as what shown in figure-2:
- When there is just one training example, the back propagation for NN is:
Note: we can check the dimension of some variables to make sure the calculation is correct. Take the computation of as example:
is , is
is 1 x 1
is 4 x 1
is 4 x 1
* is dot element multiplication, thus the final is 4 x 1
- When there are m training examples, the back propagation for NN is:
<end>