7、编译器开发全流程:从表达式到抽象语法树

编译器开发全流程:从表达式到抽象语法树

1. 尝试编译器

现在可以尝试运行编译器了。 calc 应用程序能从表达式创建中间表示(IR),而 LLVM 静态编译器 llc 会将该 IR 编译成目标文件。之后,你可以使用喜欢的 C 编译器将其与小型运行时库进行链接。

  • Unix 系统操作步骤

    1. 执行 $ calc "with a: a*3" | llc –filetype=obj –o=expr.o ,将 calc 生成的 IR 编译为目标文件 expr.o
    2. 执行 $ clang –o expr expr.o rtcalc.c ,使用 clang 编译器将目标文件和运行时库 rtcalc.c 链接成可执行文件 expr
    3. 运行 $ expr ,程序会提示输入 a 的值,输入 4 后,结果为 12
  • Windows 系统操作步骤

    1. 执行 $ calc "with a: a*3" | llc –filetyp
内容概要:本文详细介绍了一个基于CNN-GRU与AdaBoost集成的深度学习模型在时间序列预测中的完整项目实现。该模型通过卷积神经网络(CNN)提取局部时空特征,利用门控循环单元(GRU)捕捉长期时序依赖,并结合AdaBoost自适应提升算法增强模型泛化能力与鲁棒性,有效应对非线性、噪声干扰和复杂动态变化的挑战。项目涵盖从数据生成、预处理、模型构建、训练优化到结果可视化和GUI交互界面开发全流程,提供了完整的代码示例与模块化系统架构设计,支持金融、能源、交通、医疗等多个领域的高精度预测应用。; 适合人群:具备一定Python编程基础和机器学习知识,熟悉深度学习框架(如TensorFlow/Keras)的数据科学家、算法工程师及高校研究人员,尤其适合从事时间序列分析、智能预测系统开发的相关从业者。; 使用场景及目标:①实现高精度时间序列预测,如股票价格、电力负荷、交通流量等;②构建具备强鲁棒性和抗噪能力的工业级预测系统;③开发集成深度学习与集成学习的复合模型以提升预测稳定性;④通过GUI界面实现模型的便捷部署与交互式分析。; 阅读建议:建议读者结合文档中的代码逐步实践,重点关注数据预处理、模型集成机制与可视化模块的设计逻辑,同时可在不同数据集上进行迁移实验,深入理解CNN-GRU与AdaBoost协同工作的原理与优势。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值