机器学习(十二):人工神经网络(ANN)

摘要由CSDN通过智能技术生成

更多内容关注公众号:数学的旋律
在这里插入图片描述


tb店铺搜:FUN STORE玩物社,专业买手挑选送礼好物

一、人工神经元

1. 感知器

    感知器是一种人工神经元,在 20 世纪五、六⼗年代由科学家Frank Rosenblatt发明。⼀个感知器接受⼏个二进制输⼊ x 1 , x 2 , . . . x_1, x_2, . . . x1,x2,...,并产⽣⼀个二进制输出:
这里写图片描述
    ⽰例中的感知器有三个输⼊: x 1 , x 2 , x 3 x_1, x_2, x_3 x1,x2,x3,引入权重 w 1 , w 2 , w 3 w_1, w_2, w_3 w1,w2,w3表⽰相应输⼊对于输出重要性的实数。输出值0或者1,则由分配权重后的总和 ∑ j w j x j \sum_jw_jx_j jwjxj小于或者大于一些阈值决定。和权重⼀样,阈值是⼀个实数,⼀个感知器的参数。⽤更精确的代数形式:
这里写图片描述
    把阈值移到不等式的另⼀边,并⽤感知器的偏置 b ≡ − t h r e s h o l d b ≡ −threshold bthreshold 代替。⽤偏置⽽不是阈值,那么感知器的规则可以重写为:
这里写图片描述

2. S型神经元

    S 型神经元和感知器类似,但是被修改为权重和偏置的微⼩改动只引起输出的微⼩变化。正如⼀个感知器,S 型神经元有多个输⼊ x 1 , x 2 , . . . x_1, x_2, . . . x1,x2,...,但是这些输⼊可以取0和1中的任意值,如0.618…是⼀个 S 型神经元的有效输⼊,⽽不仅仅是二进制输入0或1。同样,S 型神经元对每个输⼊有权重 w 1 , w 2 , . . . w_1, w_2, . . . w1,w2,...和⼀个总的偏置 b b b,但输出不再是0或1,而是 σ ( w ⋅ x + b ) σ(w · x+b) σ(wx+b),这⾥ σ σ σ 被称为S型函数,定义为:
σ ( z ) ≡ 1 1 + e − z σ(z) ≡ \frac1{1+e^{-z}} σ(z)1+ez1
    把它们放在⼀起来更清楚地说明,⼀个具有输⼊ x 1 , x 2 , . . . x_1, x_2, . . . x1,x2,...,权重 w 1 , w 2 , . . . w_1, w_2, . . . w1,w2,...和偏置 b b b 的S型神经元的输出是:
1 1 + e − ∑ j w j x j − b = 1 1 + e x p ( − ∑ j w j x j − b ) \frac1{1+e^{-\sum_jw_jx_j-b}} = \frac1{1+exp(-\sum_jw_jx_j-b)} 1+ejwjxjb1=1+exp(jwjxjb)1

3. t a n h tanh tanh 神经元

     t a n h tanh tanh 函数的定义为:
t a n h ( z ) ≡ e z − e ( − z ) e z + e ( − z ) tanh(z) ≡ \frac{e^z - e^(-z)}{e^z + e^(-z)} tanh(z)ez+e(z)eze(z)    S型神经元和 t a n h tanh tanh 神经元之间的⼀个差异就是 t a n h tanh tanh 神经元的输出的值域是 (−1, 1) ⽽⾮ (0, 1)。这意味着如果你构建基于 t a n h tanh tanh 神经元,你可能需要正规化最终的输出(取决于应⽤的细节,还有你的输⼊),跟S型神经元略微不同。

4. 修正线性神经元(rectified linear neuron)或者修正线性单元(rectified linear unit),简记为 ReLU

    输⼊为 x x x,权重向量为 w w w,偏置为 b b b R e L U ReLU ReLU 神经元的输出是:
m a x   (   0 , w ⋅ x + b   ) max\ (\ 0, w · x + b\ ) max ( 0,wx+b )

二、神经网络

    本文我们讨论的神经⽹络,都是以上⼀层的输出作为下⼀层的输⼊。这种⽹络被称为前馈神经⽹络。这意味着⽹络中是没有回路的,信息总是向前传播,从不反向回馈。

1. 神经网络的架构

这里写图片描述
    上图⽹络中最左边的称为输⼊层,其中的神经元称为输⼊神经元。最右边的称为输出层,其中的神经元称为输出神经元,在本例中,输出层只有⼀个神经元。中间层既不是输⼊也不是输出,被称为隐藏层。

2. 神经网络的代数形式

    我们⾸先给出⽹络中权重的清晰定义。我们使⽤ w j k l w_{jk}^l wjkl 表⽰从 ( l − 1 ) t h (l − 1)^{th} (l1)th 层的 k t h k^{th} kth 个神经元到 l t h l^{th} lth 层的 j t h j^{th} jth 个神经元的链接上的权重。例如,下图给出了⽹络中第⼆层的第四个神经元到第三层的第⼆个神经元的链接上的权重:
这里写图片描述
    我们对⽹络的偏置和激活值也会使⽤类似的表⽰。显式地,我们使⽤ b j l b_j^{l} bjl 表⽰在 l t h l^{th} lth 层第 j t h j^{th} jth 个神经元的偏置,使⽤ a j l a_j^{l} ajl 表⽰ l t h l^{th} lth 层第 j t h j^{th} jth 个神经元的激活值(即神经元的输出)。下⾯的图清楚地解释了这样表⽰的含义:
这里写图片描述
    有了这些表⽰, l t h l^{th} lth 层的第 j t h j^{th} jth 个神经元的激活值 a j l a_j^{l} ajl 就和 ( l − 1 ) t h (l − 1)^{th} (l1)th 层的激活值通过⽅程关联起来了(其中 σ σ σ 称为激活函数,本文选用S型神经元进行讨论,即选择激活函数为S型函数)
a j l = σ ( ∑ k w j k l a k l − 1 + b j l ) {a_j}^l = σ(\sum_kw_{jk}^la_k^{l-1}+b_j^l) ajl=σ(kwjklakl1+bjl)    其中求和是在 ( l − 1 ) t h (l − 1)^{th} (l1)th 层的所有 k k k 个神经元上进⾏的。为了⽤矩阵的形式重写这个表达式,我们对每⼀层 l l l 都定义⼀个权重矩阵 w l w^l wl。权重矩阵 w l w^l wl 的元素正是连接到 l t h l^{th} lth 层神经元的权重,更确切地说,在第 j t h j^{th} jth ⾏第 k t h k^{th} kth 列的元素是 w j k l w_{jk}^l wjkl。类似的,对每⼀层 l l

  • 11
    点赞
  • 97
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值