an inorder binary tree traversal can be implemented in a non-recursive way with a stack
for example
suppose that when a 6-node binary tree (with the keys numbered from 1 to 6) is traversed
the stack operations are :
push(1) push(2) push(3) pop() pop() push(4) pop() pop() push(5) push(6) pop() pop()
Then a unique binary tree (shown in Figure below) can be generated from this sequence of operations .
your task is to give the postorder traversal sequence of this tree
意思是用栈模拟一颗二叉树的先序和中序遍历过程,求这颗二叉树的后序遍历序列
输入 :
6
push 1
push 2
push 3
pop
pop
push 4
pop
pop
push 5
push 6
pop
pop
输出:
- 3 4 2 6 5 1
Push的次序是1 2 3 4 5 6,所以先序遍历序列是1 2 3 4 5 6
Pop的次序是 3 2 4 1 6 5,所以中序遍历序列是 3 2 4 1 6 5
package com.yao;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.Stack;
public class TestTreeTraversal {
static int counts = 0;
static int sum = 0;
public static void main(String[] args) throws IOException {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
int n = Integer.parseInt(br.readLine());
sum = n;
Stack<Integer> integerStack = new Stack<>();
int pre[] = new int[n], in[] = new int[n], preIndex = 0, inIndex = 0;
for (int i = 0; i < 2 * n; ++i) {
String[] inputStrings = br.readLine().split("\\s+");
if (inputStrings[0].equals("Push")) {
int inStack = Integer.parseInt(inputStrings[1]);
integerStack.add(inStack);
pre[preIndex++] = inStack;
} else {
int outStack = integerStack.pop();
in[inIndex++] = outStack;
}
}
TreeNode root = create(pre, 0, preIndex-1,
in, 0, inIndex-1);
postOrder(root);
}
public static TreeNode create(int[] pre, int preLeft, int preRight,
int[] in, int inLeft, int inRight) {
if (preLeft > preRight) {
return null;
}
TreeNode root = new TreeNode(pre[preLeft]);
int findIndex = -1;
// 找出中序遍历中的根节点位置
for (int i = inLeft; i <= inRight; ++i) {
if (in[i] == root.data) {
findIndex = i;
break;
}
}
// 计算左子树的数量
int leftNum = findIndex - inLeft;
root.left = create(pre, preLeft + 1, preLeft + leftNum,
in, inLeft, findIndex - 1);
root.right = create(pre, preLeft + leftNum + 1, preRight,
in, findIndex + 1, inRight);
return root;
}
public static void postOrder(TreeNode root) {
if (root!=null) {
postOrder(root.left);
postOrder(root.right);
++counts;
if (counts<sum){
System.out.print(root.data+" ");
} else {
System.out.print(root.data);
}
}
}
}
class TreeNode {
int data;
TreeNode left = null;
TreeNode right = null;
public TreeNode(int data) {
this.data = data;
}
}
/**
* @author
* @date 2020/11/26 14:30
public class TestTreeTraversal {
public static void main(String[] args) {
Scanner scanner=new Scanner(System.in);
int i = Integer.parseInt(scanner.nextLine());
String[] lst1 = new String[i];
String[] lst2 = new String[i];
int index1 = 0;
int index2 = 0;
String s = null;
while (!(s = scanner.nextLine().trim()).isEmpty()){
String[] s1 = s.split(" ");
if(s1.length>=2){
if("push".equals(s1[0])){
lst1[index1]=s1[1];
index1++;
}else if("pop".equals(s1[0])){
lst2[index2]=s1[1];
index2++;
}
}
}
System.out.println(Arrays.asList(lst1) );
System.out.println(Arrays.asList(lst2));
}
}
*/
由于Push的顺序是先序遍历,所以本题可以直接在输入时就进行递归建树