此项目为参加阿里云Python比赛记录,供个人学习!!!!
1、赛前准备
1.1 前言
本次赛事由开源学习组织Datawhale主办,主要带领学习者利用Python进行数据分析以及数据可视化,包含数据集的处理、数据探索与清晰、数据分析、数据可视化四部分,利用pandas、matplotlib、wordcloud等第三方库带大家玩转数据分析~还有丰富礼品等你来领取哦~
学习赛事地址:https://tianchi.aliyun.com/competition/entrance/531837/introduction
1.2 数据集来源介绍
所有候选人信息
该文件为每个候选人提供一份记录,并显示候选人的信息、总收入、从授权委员会收到的转账、付款总额、给授权委员会的转账、库存现金总额、贷款和债务以及其他财务汇总信息。
数据字段描述详细:https://www.fec.gov/campaign-finance-data/all-candidates-file-description/
关键字段说明
- CAND_ID 候选人ID
- CAND_NAME 候选人姓名
- CAND_PTY_AFFILIATION 候选人党派
数据来源:https://www.fec.gov/files/bulk-downloads/2020/weball20.zip
候选人委员会链接信息
该文件显示候选人的身份证号码、候选人的选举年份、联邦选举委员会选举年份、委员会识别号、委员会类型、委员会名称和链接标识号。
信息描述详细:https://www.fec.gov/campaign-finance-data/candidate-committee-linkage-file-description/
关键字段说明
- CAND_ID 候选人ID
- CAND_ELECTION_YR 候选人选举年份
- CMTE_ID 委员会ID
数据来源:https://www.fec.gov/files/bulk-downloads/2020/ccl20.zip
个人捐款档案信息
【注意】由于文件较大,本数据集只包含2020.7.22-2020.8.20的相关数据,如果需要更全数据可以通过数据来源中的地址下载。
该文件包含有关收到捐款的委员会、披露捐款的报告、提供捐款的个人、捐款日期、金额和有关捐款的其他信息。
信息描述详细:https://www.fec.gov/campaign-finance-data/contributions-individuals-file-description/
关键字段说明
- CMTE_ID 委员会ID
- NAME 捐款人姓名
- CITY 捐款人所在市
- State 捐款人所在州
- EMPLOYER 捐款人雇主/公司
- OCCUPATION 捐款人职业
数据来源:https://www.fec.gov/files/bulk-downloads/2020/indiv20.zip
1.3 需要提前安装的包
# 安装词云处理包wordcloud
!pip install wordcloud --user
Looking in indexes: https://mirrors.aliyun.com/pypi/simple
Requirement already satisfied: wordcloud in /data/nas/workspace/envs/python3.6/site-packages (1.8.1)
Requirement already satisfied: numpy>=1.6.1 in /opt/conda/lib/python3.6/site-packages (from wordcloud) (1.19.4)
Requirement already satisfied: matplotlib in /opt/conda/lib/python3.6/site-packages (from wordcloud) (3.3.3)
Requirement already satisfied: pillow in /opt/conda/lib/python3.6/site-packages (from wordcloud) (8.0.1)
Requirement already satisfied: kiwisolver>=1.0.1 in /opt/conda/lib/python3.6/site-packages (from matplotlib->wordcloud) (1.2.0)
Requirement already satisfied: cycler>=0.10 in /opt/conda/lib/python3.6/site-packages (from matplotlib->wordcloud) (0.10.0)
Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.3 in /opt/conda/lib/python3.6/site-packages (from matplotlib->wordcloud) (2.4.7)
Requirement already satisfied: python-dateutil>=2.1 in /opt/conda/lib/python3.6/site-packages (from matplotlib->wordcloud) (2.8.1)
Requirement already satisfied: six in /opt/conda/lib/python3.6/site-packages (from cycler>=0.10->matplotlib->wordcloud) (1.15.0)
1.4 需要提前下载好数据集
【注意】如果你只是在天池技术圈看到本文,你需要先查看赛事指南。
通过赛事指南提示操作你可以成功Fork
赛事论坛的baseline到你的天池实验室,并点击编辑
按钮成功跳转到了DSW在线编程。
在进行数据处理前,你需要点击DSW左侧天池
tab,下载本案例数据集2020_US_President_political_contributions
,后续步骤才能正确执行。
2、数据处理
进行数据处理前,我们需要知道我们最终想要的数据是什么样的,因为我们是想分析候选人与捐赠人之间的关系,所以我们想要一张数据表中有捐赠人与候选人一一对应的关系,所以需要将目前的三张数据表进行一一关联,汇总到需要的数据。
2.1 将委员会和候选人一一对应,通过CAND_ID
关联两个表
由于候选人和委员会的联系表中无候选人姓名,只有候选人ID(CAND_ID
),所以需要通过CAND_ID
从候选人表中获取到候选人姓名,最终得到候选人与委员会联系表ccl
。
# 导入相关处理包
import pandas as pd
# 读取候选人信息,由于原始数据没有表头,需要添加表头
candidates = pd.read_csv("weball20.txt", sep = '|',names=['CAND_ID','CAND_NAME','CAND_ICI','PTY_CD','CAND_PTY_AFFILIATION','TTL_RECEIPTS',
'TRANS_FROM_AUTH','TTL_DISB','TRANS_TO_AUTH','COH_BOP','COH_COP','CAND_CONTRIB',
'CAND_LOANS','OTHER_LOANS','CAND_LOAN_REPAY','OTHER_LOAN_REPAY','DEBTS_OWED_BY',
'TTL_INDIV_CONTRIB','CAND_OFFICE_ST','CAND_OFFICE_DISTRICT','SPEC_ELECTION','PRIM_ELECTION','RUN_ELECTION'
,'GEN_ELECTION','GEN_ELECTION_PRECENT','OTHER_POL_CMTE_CONTRIB','POL_PTY_CONTRIB',
'CVG_END_DT','INDIV_REFUNDS','CMTE_REFUNDS'])
# 读取候选人和委员会的联系信息
ccl = pd.read_csv("ccl.txt", sep = '|',names=['CAND_ID','CAND_ELECTION_YR','FEC_ELECTION_YR','CMTE_ID','CMTE_TP','CMTE_DSGN','LINKAGE_ID'])
# 关联两个表数据
ccl = pd.merge(ccl,candidates)
# 提取出所需要的列
ccl = pd.DataFrame(ccl, columns=[ 'CMTE_ID','CAND_ID', 'CAND_NAME','CAND_PTY_AFFILIATION'])
数据字段说明:
- CMTE_ID:委员会ID
- CAND_ID:候选人ID
- CAND_NAME:候选人姓名
- CAND_PTY_AFFILIATION:候选人党派
# 查看目前ccl数据前10行
ccl.head(10)
CMTE_ID | CAND_ID | CAND_NAME | CAND_PTY_AFFILIATION | |
---|---|---|---|---|
0 | C00697789 | H0AL01055 | CARL, JERRY LEE, JR | REP |
1 | C00701557 | H0AL01063 | LAMBERT, DOUGLAS WESTLEY III | REP |
2 | C00701409 | H0AL01071 | PRINGLE, CHRISTOPHER PAUL | REP |
3 | C00703066 | H0AL01089 | HIGHTOWER, BILL | REP |
4 | C00708867 | H0AL01097 | AVERHART, JAMES | DEM |
5 | C00710947 | H0AL01105 | GARDNER, KIANI A | DEM |
6 | C00722512 | H0AL01121 | CASTORANI, JOHN | REP |
7 | C00725069 | H0AL01139 | COLLINS, FREDERICK G. RICK' | DEM |
8 | C00462143 | H0AL02087 | ROBY, MARTHA | REP |
9 | C00493783 | H0AL02087 | ROBY, MARTHA | REP |
2.2 将候选人和捐赠人一一对应,通过CMTE_ID
关联两个表
通过CMTE_ID
将目前处理好的候选人和委员会关系表与人捐款档案表进行关联,得到候选人与捐赠人一一对应联系表cil
。
# 读取个人捐赠数据,由于原始数据没有表头,需要添加表头
# 提示:读取本文件大概需要5-10s
itcont = pd.read_csv('itcont_2020_20200722_20200820.txt', sep='|',names=['CMTE_ID','AMNDT_IND','RPT_TP',