前言:
小编在前几日讲述了关于动态规划的习题,下面小编继续跟着上次的步伐,继续进入多状态dp问题的讲解(但是今天这个题目不需要多状态),今天由于小编的精力有限,所以我就仅仅先讲述一个题目,等小编过几天精力恢复过来就给各位正常的每日两题的讲解。
1.粉刷房子
1.1.题目来源
本题和前面的大多数题目一样,都是来自于力扣,下面小编给出相关的链接:LCR 091. 粉刷房子 - 力扣(LeetCode)
1.2.题目分析
本题目虽然比较长,但是理解起来还是比较容易的,首先我们面前有n个房子,每个房子都需要被粉刷,此时给予了我们三个颜料进行选择,分别是红色,蓝色,绿色。此时我们有一个规定:相邻的房子是不可以被粉刷同一个颜色的,并且每一个房子粉刷的漆的价格都是不一样的,现在给定我们一排房子,让我们去选择哪一个房子应该选择哪一个颜料,从而使得我们粉刷完所有的房子以后,其成本花费的最少,其实细看,这个题目就类似我们之前讲述的打家劫舍问题,只不过和之前不同的是,这个题目让我们提供的选择有三种,所以按理来说我们需要使用到三个dp表来实现,只不过本题目巧妙的用一个二维的数组来帮助我们解决开辟太多dp表的问题,如果想要知道如何用二维数组代替三个dp表,且听我下面的思路分析娓娓道来。
1.3.思路讲解
此时我们不难看出·,我们需要用到三个dp表实现这个题目,只不过dp表过多会导致代码写起来复杂程度上升,所以为了解决这个问题,我们可以用一个二维dp表来代替一维dp表,其中dp表的每一行表示每一个房子,其中的每一列代表的是对应的颜料,本题已经说明了每一列代表的颜料是啥了:0代表红色,1代表蓝色,2代表绿色。此时我们根据所设置好的dp表,就可以根据动态规划的五步走来实现本题目的思路分析。
1.状态表示
此时我们把设置好的表叫做dp表,其中行表示每一个房子,列表示选取的颜料,此时的dp[i] [j]到达i位置的时候,涂上j色颜料,由于本题目颜料有限,小编就把这几种状态直接列出来了。
dp[i][0]; //到达i位置的时候,涂上红色,此时最少的花费成本。
dp[i][1]; //到达i位置的时候,涂上蓝色,此时最少的花费成本。
dp[i][2]; //到达i位置的时候,涂上绿色,此时最少的花费成本。
2.状态转换方程
此时我们根据上面的思路讲解以及状态表示,就可以轻易的求取此时的状态转换方程,此时我们如果在i位置选取了红色颜料,那么它的前一个房子仅仅可以选取绿色或者蓝色(其中最小的);同样的,如果我们选取了蓝色颜料,那么它的前一个房子仅仅可以选择红色,绿色(其中最小的);如果我们选取了绿色颜料,那么它的前一个房子仅仅可以选取红色,蓝色(其中最小的),根据此,我们就可以分别列出三个状态转换方程。
dp[i][0] = cost[i][0] + min(dp[i - 1][1],dp[i - 1][2]);
dp[i][1] = cost[i][1] + min(dp[i - 1][0],dp[i - 1][2]);
dp[i][2] = cost[i][2] + min(dp[i - 1][1],dp[i - 1][0]);
3.初始化
此时初始化问题依然是我们需要关注的细节问题,此时我们可以知道当我们选取第一行元素的时候,就会出现越界的情况,所以针对于这种情况,小编的建议就是通过创建虚拟结点,即多创建一行来抵消越界的问题,此时我们让新创立的一行为0即可,只要它不印象结果,那么多创立一行也是无妨的。
4.填表顺序
从上到下,从左到右。
5.返回值
返回表中最后一行的三列中最小的那一个即可。
1.4.代码讲解
此时我们需要先设置好一个dp表,此时要比题目提供的数组的行数多一个。
int m = costs.size(),n = costs[0].size(); vector<vector<int>> f(m + 1,vector<int>(n,0));
之后我们根据状态转换方程进行填表即可。此时一定要注意下标的映射问题,此时我们比之前要多出一行,所以当我们使用数组元素的时候,我们需要让相应行减一。
for(int i = 1 ; i <= m ; i++)
{
f[i][0] = min(f[i - 1][1],f[i - 1][2]) + costs[i - 1][0];
f[i][1] = min(f[i - 1][0],f[i - 1][2]) + costs[i - 1][1];
f[i][2] = min(f[i - 1][1],f[i - 1][0]) + costs[i - 1][2];
}
此时我们返回最后一行最小的一个元素即可。
return min(min(f[m][0],f[m][1]),f[m][2]);
1.5.完整代码
class Solution {
public:
int minCost(vector<vector<int>>& costs) {
int m = costs.size(),n = costs[0].size();
vector<vector<int>> f(m + 1,vector<int>(n,0));
for(int i = 1 ; i <= m ; i++)
{
f[i][0] = min(f[i - 1][1],f[i - 1][2]) + costs[i - 1][0];
f[i][1] = min(f[i - 1][0],f[i - 1][2]) + costs[i - 1][1];
f[i][2] = min(f[i - 1][1],f[i - 1][0]) + costs[i - 1][2];
}
return min(min(f[m][0],f[m][1]),f[m][2]);
}
};
2.总结
本文到这里也就结束了,可能很多读者朋友觉着小编今天写的题目比较少,这里小编再次统一解释一下原因:小编最近在期末周,所以精力有限,虽然在我写这篇文章的时候,我已经到了期末周的尾声了,但是由于小编“一不小心”有点太放纵,导致我现在的精力有点差,所以特意写出来这一篇文章来让脑子变的有活力。一起写题的时光总是很短暂的,那么各位大佬们,我们下一篇文章见啦!