迈向智能未来:机器学习助力可持续发展
1. 可持续发展与机器学习概述
在 21 世纪,可持续发展已成为全球紧迫的任务。社会面临着环境、社会和经济等多方面的挑战,而联合国在 2015 年制定的可持续发展目标(SDGs)为全球发展提供了明确的方向,旨在到 2030 年消除贫困、保护地球并确保所有人的繁荣。然而,传统的发展方法往往难以应对这些复杂的全球性挑战,存在着无法处理环境、社会和经济问题的相互关联性、加剧不平等、忽视长期影响以及过度依赖不可持续资源等问题。
机器学习(ML)作为人工智能(AI)的一个子集,正逐渐成为解决这些复杂问题的强大工具。它能够从数据中学习和改进,通过分析大量数据、识别复杂模式并做出预测,为可持续发展提供创新解决方案。机器学习与数据和特征空间紧密相连,其适应性和从复杂数据中获取见解的能力,使其在资源管理优化、气候变化缓解、疾病爆发预测和社会福祉提升等方面发挥着重要作用。
2. 机器学习的原理和概念
2.1 数据、特征空间和从数据中学习
数据是机器学习的核心,模型通过数据学习模式并进行预测。在机器学习中,数据以特征空间的形式表示,每个数据点由一组特征或属性来描述。例如,在医疗数据集中,患者数据可能包括年龄、性别、血压和胆固醇水平等特征。学习算法在这个特征空间中工作,通过训练过程发现模式和关系,并将这些模式捕捉为模型,用于对新的、未见过的数据进行预测。
2.2 监督学习、无监督学习和强化学习
机器学习主要有三种类型:
- 监督学习 :算法在有标签的数据集上进行训练,目标是建立输入数据与精确输出之间的映射关系,通过最小化预测与真
超级会员免费看
订阅专栏 解锁全文
2925

被折叠的 条评论
为什么被折叠?



