人工智能——K-Means聚类算法(Python)

本文详细介绍了K-Means聚类算法,包括算法原理、步骤和Python实现。通过示例展示了如何使用sklearn库进行K-Means聚类,并探讨了针对大样本集的Mini Batch K-Means改进算法。最后,文章提供了实际案例,对全国31个省份的消费数据进行聚类分析,以了解各省份的消费水平。
摘要由CSDN通过智能技术生成

些天文学上的细节问题。好的,这就是聚类算法。这将是我们介绍的第一个非监督学习算法,接下来,我们将开始介绍一个具体的聚类算法。

(2)聚类

(3)K-Mean均值算法

2 K-Mean均值算法


2.1 引入

K- 均值 是最普及的聚类算法,算法接受一个未标记的数据集,然后将数据聚类成不同的

步骤:

  • 设定 K 个类别的中心的初值;
  • 计算每个样本到 K个中心的距离,按最近距离进行分类;
  • 以每个类别中样本的均值,更新该类别的中心;
  • 重复迭代以上步骤,直到达到终止条件(迭代次数、最小平方误差、簇中心点变化率)。
  • 下面是一个聚类示例:

K-means聚类算法

K-****均值算法的伪代码如下:

Repeat {

for i = 1 to m

c(i) := index (form 1 to K) of cluster centroid closest to x(i)

for k = 1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值