最新Python逻辑回归,面试必背

最后

🍅 硬核资料:关注即可领取PPT模板、简历模板、行业经典书籍PDF。
🍅 技术互助:技术群大佬指点迷津,你的问题可能不是问题,求资源在群里喊一声。
🍅 面试题库:由技术群里的小伙伴们共同投稿,热乎的大厂面试真题,持续更新中。
🍅 知识体系:含编程语言、算法、大数据生态圈组件(Mysql、Hive、Spark、Flink)、数据仓库、Python、前端等等。

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化学习资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

最大似然估计就是要求得使l(θ)取最大值时的θ,这里可以使用梯度上升法求解,求得的θ就是要求的最佳参数:

在这里插入图片描述

基于最大似然估计推导得到Cost函数和J函数如下:

在这里插入图片描述

θ更新过程可以写成:

在这里插入图片描述

正则化后的梯度下降算法θ的更新变为:

在这里插入图片描述

代码部分:

使用如下所示数据100条

在这里插入图片描述

数据加载


class Logistic_regression():

    #初始化

    def __init__(self):

        self.xmat = list();

        self.ymat = list();

    #数据加载处理

    def loadData(self,filename):

        file = open(filename);

        lines = file.readlines();

        #print(lineArry);

        for line in lines:

            lineArry = line.strip().split();#  split 用于移除字符串头尾指定的字符(默认为空格或换行符)或字符序列

            dataline = [1.0];

            for i in range(len(lineArry)):

                dataline.append(float(lineArry[i]));

            #print("dataline",dataline);

            label = dataline.pop();

            self.ymat.append(int(label));#删除最后一个  并返回

            self.xmat.append(dataline);

        self.xmat = np.mat(self.xmat); # mat()函数  转换为矩阵

        self.ymat = np.mat(self.ymat).transpose();

        #print("len",len(self.xmat));

        #print(self.xmat);





sigmoid函数


定义sigmoid函数

    def sigmod(self,X):

        return 1/(1-np.exp(-X));



梯度下降


# 梯度下降计算权重0

    def stocGradAscent0(self,maxCycles=1000,alpha=0.001):

        m,n = np.shape(self.xmat);

        weights = np.ones((n,1));

        for i in range(maxCycles):

            h = self.sigmod(self.xmat*weights);

            error = self.ymat-h;

            #print("error",np.shape(error))

            #print("xmat",np.shape(self.xmat.transpose()))

            weights+=alpha*self.xmat.transpose()*error; #ranspose()转置

        return weights;



画图


#画出最终分类图

    def plotBestfit(self,weights):

        xcord1 = [];

        xcord2 = [];

        ycord1 = [];

        ycord2 = [];

        for i in range(len(self.xmat)):

            label = self.ymat[i];

            #print(int(label))

            #用x1  代表x坐标    x2  代表y坐标

            if int(label) == 1:

                xcord1.append(self.xmat[i,1]);

                ycord1.append(self.xmat[i,2]);

            else:

                xcord2.append(self.xmat[i,1]);

                ycord2.append(self.xmat[i,2]);

        #print(xcord1,xcord2,ycord1,ycord2)

        plt.figure();

        #定义线条颜色


### 最后

Python崛起并且风靡,因为优点多、应用领域广、被大牛们认可。学习 Python 门槛很低,但它的晋级路线很多,通过它你能进入机器学习、数据挖掘、大数据,CS等更加高级的领域。Python可以做网络应用,可以做科学计算,数据分析,可以做网络爬虫,可以做机器学习、自然语言处理、可以写游戏、可以做桌面应用…Python可以做的很多,你需要学好基础,再选择明确的方向。这里给大家分享一份全套的 Python 学习资料,给那些想学习 Python 的小伙伴们一点帮助!

#### 👉Python所有方向的学习路线👈

Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。

![](https://img-blog.csdnimg.cn/img_convert/604bae65027d4d67fb62410deb210454.png)

#### 👉Python必备开发工具👈

工欲善其事必先利其器。学习Python常用的开发软件都在这里了,给大家节省了很多时间。

![](https://img-blog.csdnimg.cn/img_convert/fa276175617e0048f79437bd30465479.png)



#### 👉Python全套学习视频👈

我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了。

![](https://img-blog.csdnimg.cn/img_convert/16ac689cb023166b2ffa9c677ac40fc0.png)



#### 👉实战案例👈



学python就与学数学一样,是不能只看书不做题的,直接看步骤和答案会让人误以为自己全都掌握了,但是碰到生题的时候还是会一筹莫展。



因此在学习python的过程中一定要记得多动手写代码,教程只需要看一两遍即可。

![](https://img-blog.csdnimg.cn/img_convert/0d8c31c50236a205928a1d8ae8a0b883.png)



#### 👉大厂面试真题👈

我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。

![](https://img-blog.csdnimg.cn/img_convert/99461e47e58e503d2bc1dc6f4668534a.png)

**[需要这份系统化学习资料的朋友,可以戳这里获取](https://bbs.csdn.net/forums/4304bb5a486d4c3ab8389e65ecb71ac0)**

**一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值