一、Python所有方向的学习路线
Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。
二、Python必备开发工具
工具都帮大家整理好了,安装就可直接上手!
三、最新Python学习笔记
当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
四、Python视频合集
观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
五、实战案例
纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
六、面试宝典
简历模板
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
return Counter(first) == Counter(second)
anagram(“abcd3”, “3acdb”) # True
3. 内存占用
下面的代码块可以检查变量 variable 所占用的内存。
import sys
variable = 30
print(sys.getsizeof(variable)) # 24
4. 字节占用
下面的代码块可以检查字符串占用的字节数。
def byte_size(string):
return(len(string.encode(‘utf-8’)))
byte_size(‘😀’) # 4
byte_size(‘Hello World’) # 11
5. 打印 N 次字符串
该代码块不需要循环语句就能打印 N 次字符串。
n = 2;
s =“Programming”;
print(s * n);
ProgrammingProgramming
6. 大写第一个字母
以下代码块会使用 title() 方法,从而大写字符串中每一个单词的首字母。
s = “programming is awesome”
print(s.title())
Programming Is Awesome
7. 分块
给定具体的大小,定义一个函数以按照这个大小切割列表。
from math import ceil
def chunk(lst, size):
return list(
map(lambda x: lst[x * size:x * size + size],
list(range(0, ceil(len(lst) / size)))))
chunk([1,2,3,4,5],2)
[[1,2],[3,4],5]
8. 压缩
这个方法可以将布尔型的值去掉,例如(False,None,0,“”),它使用 filter() 函数。
def compact(lst):
return list(filter(bool, lst))
compact([0, 1, False, 2, ‘’, 3, ‘a’, ‘s’, 34])
[ 1, 2, 3, ‘a’, ‘s’, 34 ]
9. 解包
如下代码段可以将打包好的成对列表解开成两组不同的元组。
array = [[‘a’, ‘b’], [‘c’, ‘d’], [‘e’, ‘f’]]
transposed = zip(*array)
print(transposed)
[(‘a’, ‘c’, ‘e’), (‘b’, ‘d’, ‘f’)]
10. 链式对比
我们可以在一行代码中使用不同的运算符对比多个不同的元素。
a = 3
print( 2 < a < 8) # True
print(1 == a < 2) # False
休息一下 养眼
11. 逗号连接
下面的代码可以将列表连接成单个字符串,且每一个元素间的分隔方式设置为了逗号。
hobbies = [“basketball”, “football”, “swimming”]
print("My hobbies are: " + ", ".join(hobbies))
My hobbies are: basketball, football, swimming
12. 元音统计
以下方法将统计字符串中的元音 (‘a’, ‘e’, ‘i’, ‘o’, ‘u’) 的个数,它是通过正则表达式做的。
import re
def count_vowels(str):
return len(len(re.findall(r’[aeiou]', str, re.IGNORECASE)))
count_vowels(‘foobar’) # 3
count_vowels(‘gym’) # 0
13. 首字母小写
如下方法将令给定字符串的第一个字符统一为小写。
def decapitalize(string):
return str[:1].lower() + str[1:]
decapitalize(‘FooBar’) # ‘fooBar’
decapitalize(‘FooBar’) # ‘fooBar’
14. 展开列表
该方法将通过递归的方式将列表的嵌套展开为单个列表。
def spread(arg):
ret = []
for i in arg:
if isinstance(i, list):
ret.extend(i)
else:
ret.append(i)
return ret
def deep_flatten(lst):
result = []
result.extend(
spread(list(map(lambda x: deep_flatten(x) if type(x) == list else x, lst))))
return result
deep_flatten([1, [2], [[3], 4], 5]) # [1,2,3,4,5]
15. 列表的差
该方法将返回第一个列表的元素,其不在第二个列表内。如果同时要反馈第二个列表独有的元素,还需要加一句 set_b.difference(set_a)。
def difference(a, b):
set_a = set(a)
set_b = set(b)
comparison = set_a.difference(set_b)
return list(comparison)
difference([1,2,3], [1,2,4]) # [3]
16. 通过函数取差
如下方法首先会应用一个给定的函数,然后再返回应用函数后结果有差别的列表元素。
def difference_by(a, b, fn):
b = set(map(fn, b))
return [item for item in a if fn(item) not in b]
from math import floor
difference_by([2.1, 1.2], [2.3, 3.4],floor) # [1.2]
difference_by([{ ‘x’: 2 }, { ‘x’: 1 }], [{ ‘x’: 1 }], lambda v : v[‘x’])
[ { x: 2 } ]
17. 链式函数调用
你可以在一行代码内调用多个函数。
def add(a, b):
return a + b
def subtract(a, b):
return a - b
a, b = 4, 5
print((subtract if a > b else add)(a, b)) # 9
18. 检查重复项
如下代码将检查两个列表是不是有重复项。
def has_duplicates(lst):
return len(lst) != len(set(lst))
x = [1,2,3,4,5,5]
y = [1,2,3,4,5]
has_duplicates(x) # True
has_duplicates(y) # False
19. 合并两个字典
下面的方法将用于合并两个字典。
def merge_dictionaries(a, b)
return {**a, **b}
a = { ‘x’: 1, ‘y’: 2}
b = { ‘y’: 3, ‘z’: 4}
print(merge_dictionaries(a, b))
{‘y’: 3, ‘x’: 1, ‘z’: 4}
20. 将两个列表转化为字典
如下方法将会把两个列表转化为单个字典。
def to_dictionary(keys, values):
return dict(zip(keys, values))
keys = [“a”, “b”, “c”]
values = [2, 3, 4]
print(to_dictionary(keys, values))
{‘a’: 2, ‘c’: 4, ‘b’: 3}
21. 使用枚举
我们常用 For 循环来遍历某个列表,同样我们也能枚举列表的索引与值。
list = [“a”, “b”, “c”, “d”]
for index, element in enumerate(list):
print(“Value”, element, "Index ", index, )
(‘Value’, ‘a’, 'Index ', 0)
(‘Value’, ‘b’, 'Index ', 1)
#(‘Value’, ‘c’, 'Index ', 2)
(‘Value’, ‘d’, 'Index ', 3)
22. 执行时间
如下代码块可以用来计算执行特定代码所花费的时间。
import time
start_time = time.time()
a = 1
b = 2
c = a + b
print© #3
end_time = time.time()
total_time = end_time - start_time
print("Time: ", total_time)
('Time: ', 1.1205673217773438e-05)
23.Try else
我们在使用 try/except 语句的时候也可以加一个 else 子句,如果没有触发错误的话,这个子句就会被运行。
try:
2*3
except TypeError:
print(“An exception was raised”)
else:
print(“Thank God, no exceptions were raised.”)
#Thank God, no exceptions were raised.
24. 元素频率
(1)Python所有方向的学习路线(新版)
这是我花了几天的时间去把Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
最近我才对这些路线做了一下新的更新,知识体系更全面了。
(2)Python学习视频
包含了Python入门、爬虫、数据分析和web开发的学习视频,总共100多个,虽然没有那么全面,但是对于入门来说是没问题的,学完这些之后,你可以按照我上面的学习路线去网上找其他的知识资源进行进阶。
(3)100多个练手项目
我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了,只是里面的项目比较多,水平也是参差不齐,大家可以挑自己能做的项目去练练。
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!