题意:求所有不相交的回文串的对数。
思路:正难则反,我们发现求相交的对数很难,于是我们求不相交的对数。具体方法是处理出以某个点为开始以及以某个点为结尾的回文串的对数。
总结一下我使用manacher的习惯:
1.首先我的开头和末尾都会添加‘ # ’。这样我求出的每一个回文串都以‘ # ’ 开头和结尾,我们求原串对应的回文串长度的时候只需要 / 2下取整
2.其次,我们求某一个位置开头的回文串的个数时,只需要在扩展之后的串求出,再映射到原串即可。
我们在扩展串上做差分,而不在原串上做差分。
#include <bits/stdc++.h>
using namespace std;
const int maxn = 4000005;
const int mod = 51123987;
void manacher( const char* str,int* r ){
int mx(0),c(1),i,j;
int len = strlen(str);
r[0] = r[len-1] = 1;
for( i = 1;i < len-1;i++ ){
if( mx >= i ) j = min( r[ (c<<1)-i ],mx-i+1 );
else j = 1;
while((i-j) >= 0 && i+j < len && str[i-j] == str[i+j] )++j;
if( i+j-1 > mx ){
mx = i+j-1;
c = i;
}
r[i] = j;
}
}
char str[maxn],ss[maxn];
long long st[maxn],ed[maxn],edd[maxn];
int r[maxn];
int main(){
int n;
scanf("%d",&n);
scanf("%s",ss);
for( int i = 0;i < n;i++ ){
str[i<<1] = '#';
str[i<<1|1] = ss[i];
}
str[n<<1] = '#';
str[n<<1|1] = '\0';
manacher( str,r );
int len = strlen(str);
for( int i = 0;i < len;i++ ){
int l = i-r[i]+1;
int rr = i+r[i]-1;
st[l]++;st[i+1]--;
ed[i]++;ed[rr+1]--;
}
for( int i = 0;i < len;i++ ){
if(i){
st[i] += st[i-1];
ed[i] += ed[i-1];
}
}
long long sum = 0;
for( int i = 0;i < n;i++ ){
st[i] = st[i<<1|1];
ed[i] = ed[i<<1|1];
edd[i] = ed[i];
sum = (sum +st[i])%mod;
}
for( int i = 0;i < n;i++ ){
if(i){
st[i] += st[i-1];
ed[i] += ed[i-1];
}
}
sum = sum*(sum-1)/2%mod;
long long ans = 0;
for( int i = 0;i < n-1;i++ ){
ans = (ans + 1LL*edd[i]*(st[n-1]-st[i]) )%mod;
}
sum = (sum-ans+mod)%mod;
printf("%I64d\n",sum);
return 0;
}