torch.nn.dropout和torch.nn.F.dropout

torch.nn.dropout和torch.nn.F.dropout

  • nn.dropout是调用F.dropout实现的
  • nn.Dropout派生自nn.Module,nn.Dropout是模型钟的一层,所以nn.dropout在模型的init()函数还总被定义为一层,而F.dropout在forward函数中直接使用
import torch
import torch.nn as nn

class Model1(nn.Module):
    def __init__(self,p=0.0):
        super().__init__()
        self.p = p
        
    def forward(self,inputs):
        return nn.functional.dropout(inputs,p=self.p,training=True)

class Modul2(nn.Module):
    def __init__(self,p=0.0):
        super().__init__()
        self.drop_layer = nn.Dropout(p=p)
        
    def forward(self,inputs)
        self.drop_layer(inputs)

model1 = Model1(p = 0.5)
model2 = Model2(p = 0.5)
inputs = torch.rand(10)
print("inputs",inputs)
print('Normal(train)model:')
print('Model 1',model1(inputs))
print('Model 2', model2(inputs))

model1.eval()
model2.eval()
print('Evaluation mode:')
print('Model 1',model1(inputs))
print('Model 2',model2(inputs))

print('Print summary')
print(model1)
print(model2)

如果使用的是F.dropout,那么在model.eval的时候如果没有对dropout函数调整,还是会有dropout操作。使用

nn.functional.dropout(inputs, p=self.p, training=self.training)

就可以和nn.dropout一样

推荐 nn.dropout

  1. Dropout被设计为只在训练中使用,所以当你对模型进行预测或评估时,你需要关闭Dropout。nn.dropout可以方便地处理这个问题,在模型进入eval时立即关闭Dropout,而F.dropout并care你是什么模式。
  2. 分配给模型的所有模块都在模型中注册。所以模型类跟踪它们,这就是为什么可以通过调用eval()关闭dropout模块。当使用F.dropout时,您的模型并不知道它,所以模型的summary中也不会出现dropout模块
### 回答1: torch.nn.functional.dropout是PyTorch中的一个函数,用于在神经网络中进行dropout操作。dropout是一种正则化技术,可以在训练过程中随机地将一些神经元的输出置为,从而减少过拟合的风险。该函数的输入包括输入张量、dropout概率和是否在训练模式下执行dropout操作。输出为执行dropout操作后的张量。 ### 回答2: torch.nn.functional.dropout是PyTorch中的一个函数,用于实现dropout操作。在深度学习中,dropout是一种常用的正则化技术,通过随机将某些神经元的输出置零,来减少过拟合的风险。 dropout函数的输入参数包括三个:input输入张量、p dropout概率以及training模式。其中,input是一个具有任意形状的张量,p是将输入置零的概率,training标志表示模型当前是否处于训练模式。 dropout的工作原理是对输入张量的每个元素以概率p置零,然后按照比例1/(1-p)放大未置零的元素,以保持期望值不变。这种随机置零的操作,可以看作是在模型中的不同路径间进行了随机选择,从而减少了神经元之间的依赖关系,防止过拟合。 在训练模式下,dropout可以有效地减少神经元间的共适应性,提高模型的泛化能力。而在评估模式下,dropout被关闭,可以利用所有神经元的权重进行预测,得到更准确的结果。 总之,torch.nn.functional.dropout是PyTorch中实现dropout操作的函数。它可以在训练模式下通过随机置零神经元的输出来减少过拟合,在评估模式下则关闭dropout,利用所有神经元进行预测。通过合理配置dropout的概率,可以提高深度学习模型的泛化能力。 ### 回答3: torch.nn.functional.dropout是PyTorch中一个用于进行dropout操作的函数。dropout是深度学习中一种常用的正则化方法,用于防止神经网络过拟合。 在深度学习中,神经网络的过拟合是指训练过程中模型过度拟合训练数据,导致在测试阶段模型表现不佳。为了减少过拟合,dropout通过在训练过程中将一部分神经元设置为0来随机丢弃一些神经元,限制了每个神经元对其他神经元的依赖,从而减少了模型的复杂性。 torch.nn.functional.dropout函数的调用方式为torch.nn.functional.dropout(input, p=0.5, training=True, inplace=False)。 其中,input是输入的特征张量;p是dropout的概率,表示将神经元置为0的概率,默认为0.5;training表示是否在训练阶段使用dropout,默认为True;inplace表示是否原地操作,即是否覆盖输入张量,默认为False。 torch.nn.functional.dropout函数会根据给定的dropout概率随机将输入张量中的某些元素置为0,并进行缩放,以保持期望输入的总和不变。同时,如果training为False,则直接返回输入张量,不进行dropout操作。 总之,torch.nn.functional.dropout函数是PyTorch中用于进行dropout操作的函数,可以一定程度上减小神经网络的过拟合风险。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值