2020CVPR超分列:UnpairedImage SR using Pseudo-Supervision+Data Augmentation SR+Closed-loop Matters

1、Unpaired Image Super-Resolution using Pseudo-Supervision

根据unpaired 训练样本,做一个从LR源域 x ( ∈ X ) x(\in X) x(X)到SR目标域 y ( ∈ Y ) y(\in Y) y(Y)的映射。在这里插入图片描述clean LR HR根据一个预先定义好的操作降采样 y ↓ ( ∈ Y ↓ ) y_{\downarrow}(\in Y_{\downarrow}) y(Y) F X Y F_{XY} FXY就是指 G X Y ↓ G_{XY_{\downarrow}} GXY U Y ↓ Y U_{Y_{\downarrow}Y} UYY
使用RCAN作为基础结构。

2、Rethinking Data Augmentation for Image Super-resolution: A Comprehensive Analysis and a New Strategy(CutBlur)

在这里插入图片描述

作者的策略是:
x L R ∈ R W × H × C x_{LR} \in R^{W \times H \times C} xLRRW×H×C x H R ∈ R s W × s H × C x_{HR}\in R^{sW \times sH \times C} xHRRsW×sH×C 是LR和HR图片patches。CutBlur的做法是首先上采样 x L R x_{LR} xLR,通过cut past方式将 x H R x_{HR} xHRpast到对应的 x L R x_{LR} xLR和反过来的操作, 产生训练样本 x ^ H R → L R , x ^ L R → H R {\hat x_{HR \to LR}, \hat x_{LR \to HR}} x^HRLR,x^LRHR
x ^ H R → L R = M ⊙ x H R + ( 1 − M ) ⊙ x L R s \hat x_{HR \to LR} = M⊙x_{HR} + (1 - M) ⊙ x_{LR}^s x^HRLR=MxHR+(1M)xLRs
x ^ L R → H R = M ⊙ x L R s + ( 1 − M ) ⊙ x H R \hat x_{LR \to HR} = M ⊙ x_{LR}^s + (1- M)⊙ x_{HR} x^LRHR=MxLRs+(1M)xHR
M ∈ 0 , 1 s W × s H M \in {0,1}^{sW \times sH} M0,1sW×sH表示一个二值 mask
作者认为这种方法可以让网络学会‘how’,'where’,使网络超分结果不会产生太过尖锐的边缘。
同时在训练网络的时候,可以用混合的数据增强方式。

3、Closed-loop Matters: Dual Regression Networks for Single Image Super-Resolution

3. 1总结

目前有三个limitations:
1、映射是病态的,可以有无限多个HR得到同个LR
2、LR-HR图片对在现实中比较难获取到。
3、潜在的退化模型是未知多样的
对于上面的问题,作者:
采用一种双向的方式。用一种双重回归方式形成闭环,减少了优化的空间。假设从LR恢复到HR是最优的,如果用相同的下采样方式,就可以得到原来的下采样图片。通过这个约束,可以预测潜在的下采样核并且减少了从LR到HR的映射空间。
对于第二个限制,作者的方案里面LR图片的回归不依赖于HR图片,可以直接从LR图片里面学习,所以可以很好地迁移到real-word数据集。
在这里插入图片描述

3.2 方法

Definition 1(Primal Regression Task) P : X → Y P : X \to Y P:XY
Definition 2(Dual Regression Task) D : Y → X D: Y \to X D:YX
两个模型之前形成闭环并且提供了信息监督信号。两个模型同时学习,通过下面的方式:
提供了 N N N 对图片 S p = { ( x i , y i ) } i = 1 N S_p = \{(x_i, y_i)\}_{i= 1}^N Sp={(xi,yi)}i=1N x i x_i xi y i y_i yi 分别表示了第 i i i 对的低分辨率图和高分辨率图片。训练的loss可以写成
∑ i = 1 N L p ( P ( x i ) , y i ) + λ L D ( D ( P ( x i ) ) , x i ) \sum_{i=1}^N L_p(P(x_i), y_i) + \lambda L_D(D(P(x_i)), x_i) i=1NLp(P(xi),yi)+λLD(D(P(xi)),xi)
L P L_P LP L D L_D LD是对应的损失函数( l 1 l_1 l1-norm)。
算法:
在这里插入图片描述
在这里插入图片描述

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值