P2766 最长不下降子序列问题

«问题描述:

给定正整数序列x1,…,xn 。

(1)计算其最长不下降子序列的长度s。

(2)计算从给定的序列中最多可取出多少个长度为s的不下降子序列。

(3)如果允许在取出的序列中多次使用x1和xn,则从给定序列中最多可取出多少个长度为s的不下降子序列。

«编程任务:

设计有效算法完成(1)(2)(3)提出的计算任务。

输入格式
第1 行有1个正整数n,表示给定序列的长度。接下来的1 行有n个正整数n:x1, …, xn。

输出格式
第1 行是最长不下降子序列的长度s。第2行是可取出的长度为s 的不下降子序列个数。第3行是允许在取出的序列中多次使用x1和xn时可取出的长度为s 的不下降子序列个数。

输入输出样例
输入
4
3 6 2 5
输出
2
2
3
说明/提示
n≤500n≤500

第一问用dp求解,得到长度为maxn
第二问,根据dp得到的结果建图
具体想法是参考了别人的题解。
我的程序里 d p [ i ] dp[i] dp[i] 代表以 i i i 为结束点的最长长度为多少

如果 d p [ i ] = = 1 dp[i]==1 dp[i]==1 表明 i i i 是起始点,所以把它和源点 s s s 连起来,容量为1
如果 d p [ i ] = = m a x n dp[i]==maxn dp[i]==maxn 表明 i i i 是终点,所以把它和汇点 t t t 连起来,容量为1

如果 j < i j<i j<i,且 a [ i ] > = a [ j ] a[i]>=a[j] a[i]>=a[j] d p [ i ] = d p [ j ] + 1 dp[i] = dp[j] + 1 dp[i]=dp[j]+1 ,则连一条边从 i i i j j j

为了满足第二问的条件,每个点只用一次,把除了源点 s s s 和汇点 t t t 的点拆成两个点, i i i 连接所有连出去的边, i + n i+n i+n 连接所有连入的边,再连一条从 i + n i+n i+n i i i 的边,容量为1。

然后从 s s s 开始跑最大流,得到的结果就是 L I S LIS LIS 的数量

第三问,可以多次使用 x 1 x1 x1 x n xn xn 点,所以我们把 < s , 1 > < 1 + n , 1 > < n , t > < n + n , n > <s,1><1+n,1><n,t><n+n,n> <s,1><1+n,1><n,t><n+n,n>边的容量改为 i n f inf inf,再跑一次最大流就可以得到答案

超级巧妙的建图方法,相当于把所有可能的 L I S LIS LIS 都列出来,让网络流去找最多的LIS。

#include<bits/stdc++.h>
using namespace std;

const int N = 1e3 + 10;
const int bs = 500;
const int inf = 2147483647;
int a[N],dp[N];

struct node{
    int u,v,w,nx;
}edge[N * N];

int tot = 1,head[N],s = 1001,t = 1002;

inline void add(int u,int v,int w)
{
    edge[++tot].u = u;
    edge[tot].v = v;
    edge[tot].w = w;
    edge[tot].nx = head[u];
    head[u] = tot;
}

int dis[N];

bool bfs()
{
    memset(dis,-1,sizeof(dis));
    queue<int> q;
    q.push(s);
    dis[s] = 0;
    while (!q.empty())
    {
        int u = q.front();
        q.pop();
        for (int i = head[u];i;i = edge[i].nx)
        {
            int v = edge[i].v;
            if (dis[v] == -1 && edge[i].w > 0)
            {
                q.push(v);
                dis[v] = dis[u] + 1;
            }
        }
    }
    return dis[t] != -1;
}

int dfs(int u,int exp)
{
    if (u == t) return exp;
    int flow = 0,tmp = 0;
    for (int i = head[u];i;i = edge[i].nx)
    {
        int v = edge[i].v;
        if (dis[v] == dis[u] + 1 && edge[i].w > 0)
        {
            tmp = dfs(v,min(exp,edge[i].w));
            if (!tmp) continue;
            edge[i].w -= tmp;
            flow += tmp;
            exp -= tmp;
            edge[i^1].w += tmp;
            if (!exp) break;
        }
    }
    return flow;
}

int dinic()
{
    int ans = 0;
    while (bfs()) ans += dfs(s,inf);
    return ans;
}

int main()
{
    int n;
    scanf("%d",&n);
    for (int i = 1;i<=n;i++) scanf("%d",&a[i]);
    int maxn = 0;
    //dp求解LIS的最长长度
    for (int i = 1;i<=n;i++)
    {
        dp[i] = 1;
        for (int j = 1;j<i;j++)
        {
            if (a[j] <= a[i]) dp[i] = max(dp[i],dp[j] + 1);
        }
        maxn = max(maxn,dp[i]);
    }
    printf("%d\n",maxn);
    //回答第二问
    //建图
    for (int i = 1;i<=n;i++)
    {
        if (dp[i] == maxn) add(i,t,1),add(t,i,0);
        if (dp[i] == 1) add(s,i+bs,1),add(i+bs,s,0);
        add(i+bs,i,1);
        add(i,i+bs,0);
        for (int j = 1;j<i;j++)
        {
            if (a[j] <= a[i] && dp[j] + 1 == dp[i])
            {
                add(j,i+bs,1);
                add(i+bs,j,0);
            }
        }
    }
    cout<<dinic()<<'\n';//网络流模板
    //修改<s,1><1+n,1><n,t><n+n,n>4条边为inf
    for (int i = 2;i<=tot;i+=2)
    {
        edge[i].w = 1;
        if (edge[i].u == s && edge[i].v == 1 + bs) edge[i].w = inf;
        if (edge[i].u == 1+bs && edge[i].v == 1) edge[i].w = inf;
        if (edge[i].u == n+bs && edge[i].v == n) edge[i].w = inf;
        if (edge[i].u == n && edge[i].v == t) edge[i].w = inf;
        edge[i^1].w = 0;
    }
    cout<<dinic()<<'\n';//网络流模板
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值