基于机器学习的锂离子电池容量估计使用多通道充电配置程序,利用神经网络学习容量与充电性能之间的关系。
使用前馈神经网络,卷积神经网络和长短时记忆来准确地估计健康状态。
电池寿命预测,有相关资料数据
ID:41100644162340603
jimmy_g
基于机器学习的锂离子电池容量估计是当前领域的研究热点之一。随着移动设备和电动汽车等应用的广泛普及,对电池容量估计的准确性和稳定性要求越来越高。本文将介绍一种基于多通道充电配置程序的机器学习方法,利用神经网络学习电池容量与充电性能之间的关系,从而实现准确的容量估计和健康状态预测。
在过去的几年里,机器学习在电池容量估计方面取得了显著的进展。传统的充放电测试方法需要大量的时间和资源,而且容易受到环境条件的干扰。而基于机器学习的方法可以通过分析电池的充电过程和性能指标来预测电池的容量,不仅提高了估计的准确性,还节省了时间和成本。
本研究使用了前馈神经网络、卷积神经网络和长短时记忆网络等深度学习模型。前馈神经网络是一种最基本的神经网络结构,它将输入数据传递给神经元并输出结果,具有较好的处理能力。卷积神经网络在图像处理领域有着广泛的应用,能够有效地提取输入数据的特征。而长短时记忆网络则可以捕捉序列数据中的时间依赖关系,适用于处理电池充电过程中的