hdu 1536 sg函数

Problem Description
Arthur and his sister Caroll have been playing a game called Nim for some time now. Nim is played as follows:

The starting position has a number of heaps, all containing some, not necessarily equal, number of beads.

The players take turns chosing a heap and removing a positive number of beads from it.

The first player not able to make a move, loses.

Arthur and Caroll really enjoyed playing this simple game until they recently learned an easy way to always be able to find the best move:

Xor the number of beads in the heaps in the current position (i.e. if we have 2, 4 and 7 the xor-sum will be 1 as 2 xor 4 xor 7 = 1).

If the xor-sum is 0, too bad, you will lose.

Otherwise, move such that the xor-sum becomes 0. This is always possible.

It is quite easy to convince oneself that this works. Consider these facts:

The player that takes the last bead wins.

After the winning player’s last move the xor-sum will be 0.

The xor-sum will change after every move.

Which means that if you make sure that the xor-sum always is 0 when you have made your move, your opponent will never be able to win, and, thus, you will win.

Understandibly it is no fun to play a game when both players know how to play perfectly (ignorance is bliss). Fourtunately, Arthur and Caroll soon came up with a similar game, S-Nim, that seemed to solve this problem. Each player is now only allowed to remove a number of beads in some predefined set S, e.g. if we have S =(2, 5) each player is only allowed to remove 2 or 5 beads. Now it is not always possible to make the xor-sum 0 and, thus, the strategy above is useless. Or is it?

your job is to write a program that determines if a position of S-Nim is a losing or a winning position. A position is a winning position if there is at least one move to a losing position. A position is a losing position if there are no moves to a losing position. This means, as expected, that a position with no legal moves is a losing position.

Input
Input consists of a number of test cases. For each test case: The first line contains a number k (0 < k ≤ 100 describing the size of S, followed by k numbers si (0 < si ≤ 10000) describing S. The second line contains a number m (0 < m ≤ 100) describing the number of positions to evaluate. The next m lines each contain a number l (0 < l ≤ 100) describing the number of heaps and l numbers hi (0 ≤ hi ≤ 10000) describing the number of beads in the heaps. The last test case is followed by a 0 on a line of its own.

Output
For each position: If the described position is a winning position print a ‘W’.If the described position is a losing position print an ‘L’. Print a newline after each test case.

Sample Input
2 2 5
3
2 5 12
3 2 4 7
4 2 3 7 12
5 1 2 3 4 5
3
2 5 12
3 2 4 7
4 2 3 7 12
0

Sample Output
LWW
WWL

大致题意:有多组数据,首先输入k 表示集合s的大小,接下来输入k个集合s中的元素,表示每次拿的某堆中的石头数量只能是集合s中的元素的值。接下来输入一个m表示将要进行m次查询。接下来m行,每行输入一个n表示有n堆石头,接着输入每堆的石头数,每次一个人只能拿一堆中的石头,谁取走最后一个石头谁赢,问这一行所表示的输赢状态,如果先手必胜则输出W否则输出L。

思路:sg函数(Sprague-Grudy定理)
可以将其看成n个游戏,然后合并。

代码1 dfs求sg[]

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <string>

using namespace std;
const int maxn=10100;
int sg[maxn];
int s[102];

int k;//k是集合s的大小 

int mex(int x)//dfs求sg[x]模板 
{
    if(sg[x]!=-1) return sg[x];
    bool vis[110];
    memset(vis,0,sizeof(vis));

    for(int i=0;i<k;i++)
    {
        if(x>=s[i])
        {
            mex(x-s[i]);
            vis[sg[x-s[i]]]=1;
        }
    }
    int i=0;
    while(vis[i])
    {
        i++;
    }
    return sg[x]=i;
}


int main()
{

    while(scanf("%d",&k)!=EOF)
    {
        if(!k) break;
        memset(sg,-1,sizeof(sg));
        for(int i=0;i<k;i++)
        scanf("%d",&s[i]);
        sort(s,s+k);//s集合需要先弄成有序
        int cas;
        scanf("%d",&cas);
        while(cas--)
        {
            int t,sum=0;
            scanf("%d",&t);
            while(t--)
            {
                int num;
                scanf("%d",&num);
                sum^=mex(num);
            }
            if(!sum) printf("L");
            else printf("W");
        }
        printf("\n");
    }
    return 0;
}

代码2 打表求sg[]

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <string>

using namespace std;
const int maxn=10100;
int sg[maxn];
int s[102];
bool vis[maxn];
int k;//k是集合s的大小 

void get_sg()
{
    int i,j;
    for(i=0;i<maxn;i++)
    {
        memset(vis,0,sizeof(vis));
       j=0;
        while(j<k&&s[j]<=i)
        {
          vis[sg[i-s[j]]]=1;
        j++;
    }
        for(j=0;j<maxn;j++)
        if(!vis[j])
        {
            sg[i]=j;
            break;
        }
    }
}

int main()
{

    while(scanf("%d",&k)!=EOF)
    {
        if(!k) break;
        memset(sg,-1,sizeof(sg));
        for(int i=0;i<k;i++)
        scanf("%d",&s[i]);
        sort(s,s+k);
        get_sg();
        int cas;
        scanf("%d",&cas);
        while(cas--)
        {
            int t,sum=0;
            scanf("%d",&t);
            while(t--)
            {
                int num;
                scanf("%d",&num);
                sum^=sg[num];
            }
            if(!sum) printf("L");
            else printf("W");
        }
        printf("\n");
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>