Problem Description
Arthur and his sister Caroll have been playing a game called Nim for some time now. Nim is played as follows:
The starting position has a number of heaps, all containing some, not necessarily equal, number of beads.
The players take turns chosing a heap and removing a positive number of beads from it.
The first player not able to make a move, loses.
Arthur and Caroll really enjoyed playing this simple game until they recently learned an easy way to always be able to find the best move:
Xor the number of beads in the heaps in the current position (i.e. if we have 2, 4 and 7 the xor-sum will be 1 as 2 xor 4 xor 7 = 1).
If the xor-sum is 0, too bad, you will lose.
Otherwise, move such that the xor-sum becomes 0. This is always possible.
It is quite easy to convince oneself that this works. Consider these facts:
The player that takes the last bead wins.
After the winning player’s last move the xor-sum will be 0.
The xor-sum will change after every move.
Which means that if you make sure that the xor-sum always is 0 when you have made your move, your opponent will never be able to win, and, thus, you will win.
Understandibly it is no fun to play a game when both players know how to play perfectly (ignorance is bliss). Fourtunately, Arthur and Caroll soon came up with a similar game, S-Nim, that seemed to solve this problem. Each player is now only allowed to remove a number of beads in some predefined set S, e.g. if we have S =(2, 5) each player is only allowed to remove 2 or 5 beads. Now it is not always possible to make the xor-sum 0 and, thus, the strategy above is useless. Or is it?
your job is to write a program that determines if a position of S-Nim is a losing or a winning position. A position is a winning position if there is at least one move to a losing position. A position is a losing position if there are no moves to a losing position. This means, as expected, that a position with no legal moves is a losing position.
Input
Input consists of a number of test cases. For each test case: The first line contains a number k (0 < k ≤ 100 describing the size of S, followed by k numbers si (0 < si ≤ 10000) describing S. The second line contains a number m (0 < m ≤ 100) describing the number of positions to evaluate. The next m lines each contain a number l (0 < l ≤ 100) describing the number of heaps and l numbers hi (0 ≤ hi ≤ 10000) describing the number of beads in the heaps. The last test case is followed by a 0 on a line of its own.
Output
For each position: If the described position is a winning position print a ‘W’.If the described position is a losing position print an ‘L’. Print a newline after each test case.
Sample Input
2 2 5
3
2 5 12
3 2 4 7
4 2 3 7 12
5 1 2 3 4 5
3
2 5 12
3 2 4 7
4 2 3 7 12
0
Sample Output
LWW
WWL
大致题意:有多组数据,首先输入k 表示集合s的大小,接下来输入k个集合s中的元素,表示每次拿的某堆中的石头数量只能是集合s中的元素的值。接下来输入一个m表示将要进行m次查询。接下来m行,每行输入一个n表示有n堆石头,接着输入每堆的石头数,每次一个人只能拿一堆中的石头,谁取走最后一个石头谁赢,问这一行所表示的输赢状态,如果先手必胜则输出W否则输出L。
思路:sg函数(Sprague-Grudy定理)
可以将其看成n个游戏,然后合并。
代码1 dfs求sg[]
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <string>
using namespace std;
const int maxn=10100;
int sg[maxn];
int s[102];
int k;//k是集合s的大小
int mex(int x)//dfs求sg[x]模板
{
if(sg[x]!=-1) return sg[x];
bool vis[110];
memset(vis,0,sizeof(vis));
for(int i=0;i<k;i++)
{
if(x>=s[i])
{
mex(x-s[i]);
vis[sg[x-s[i]]]=1;
}
}
int i=0;
while(vis[i])
{
i++;
}
return sg[x]=i;
}
int main()
{
while(scanf("%d",&k)!=EOF)
{
if(!k) break;
memset(sg,-1,sizeof(sg));
for(int i=0;i<k;i++)
scanf("%d",&s[i]);
sort(s,s+k);//s集合需要先弄成有序
int cas;
scanf("%d",&cas);
while(cas--)
{
int t,sum=0;
scanf("%d",&t);
while(t--)
{
int num;
scanf("%d",&num);
sum^=mex(num);
}
if(!sum) printf("L");
else printf("W");
}
printf("\n");
}
return 0;
}
代码2 打表求sg[]
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <string>
using namespace std;
const int maxn=10100;
int sg[maxn];
int s[102];
bool vis[maxn];
int k;//k是集合s的大小
void get_sg()
{
int i,j;
for(i=0;i<maxn;i++)
{
memset(vis,0,sizeof(vis));
j=0;
while(j<k&&s[j]<=i)
{
vis[sg[i-s[j]]]=1;
j++;
}
for(j=0;j<maxn;j++)
if(!vis[j])
{
sg[i]=j;
break;
}
}
}
int main()
{
while(scanf("%d",&k)!=EOF)
{
if(!k) break;
memset(sg,-1,sizeof(sg));
for(int i=0;i<k;i++)
scanf("%d",&s[i]);
sort(s,s+k);
get_sg();
int cas;
scanf("%d",&cas);
while(cas--)
{
int t,sum=0;
scanf("%d",&t);
while(t--)
{
int num;
scanf("%d",&num);
sum^=sg[num];
}
if(!sum) printf("L");
else printf("W");
}
printf("\n");
}
return 0;
}