免费馅饼 HDU - 1176 (简单dp)

38 篇文章 0 订阅

Problem Description
都说天上不会掉馅饼,但有一天gameboy正走在回家的小径上,忽然天上掉下大把大把的馅饼。说来gameboy的人品实在是太好了,这馅饼别处都不掉,就掉落在他身旁的10米范围内。馅饼如果掉在了地上当然就不能吃了,所以gameboy马上卸下身上的背包去接。但由于小径两侧都不能站人,所以他只能在小径上接。由于gameboy平时老呆在房间里玩游戏,虽然在游戏中是个身手敏捷的高手,但在现实中运动神经特别迟钝,每秒种只有在移动不超过一米的范围内接住坠落的馅饼。现在给这条小径如图标上坐标:
这里写图片描述

为了使问题简化,假设在接下来的一段时间里,馅饼都掉落在0-10这11个位置。开始时gameboy站在5这个位置,因此在第一秒,他只能接到4,5,6这三个位置中其中一个位置上的馅饼。问gameboy最多可能接到多少个馅饼?(假设他的背包可以容纳无穷多个馅饼)

Input
输入数据有多组。每组数据的第一行为以正整数n(0< n<100000),表示有n个馅饼掉在这条小径上。在结下来的n行中,每行有两个整数x,T(0< T<100000),表示在第T秒有一个馅饼掉在x点上。同一秒钟在同一点上可能掉下多个馅饼。n=0时输入结束。

Output
每一组输入数据对应一行输出。输出一个整数m,表示gameboy最多可能接到m个馅饼。
提示:本题的输入数据量比较大,建议用scanf读入,用cin可能会超时。

Sample Input
6
5 1
4 1
6 1
7 2
7 2
8 3
0

Sample Output
4

思路:比好想的一道dp题,假设pie[t][x]表示t时刻在x位置上落下 馅饼的数量,dp[t][x] 表示t时刻在x位置上所能得到的最大的馅饼的数量,那么很容易的就可以列出状态转移方程。dp[t][x]=max(dp[t-1][x],dp[t-1][x-1],dp[t-1][x+1])+pie[t]x。最后结果就是dp[t][i](0<=i<=10)中的最大值,t为最后的时刻。

代码如下

#include <iostream> 
#include <cmath>
#include <algorithm>
#include <cstring>
#include <queue>
#include <cstdio>
#include <map>
using namespace std; 
#define ll long long int 
int pie[100005][15];
int dp[100005][15];
int main()
{
    int n;
    while(1)
    {
        scanf("%d",&n);
        if(n==0)
        break;
        memset(pie,0,sizeof(pie));
        int maxn=0;//记录最后的时刻
        while(n--)
        {
            int t,x;
            scanf("%d%d",&x,&t);
            maxn=max(maxn,t);
            pie[t][x]++;    
        }
        memset(dp,-1,sizeof(dp));//初始化,当dp[][]为-1时,说明当前时刻该位置不能达到
        dp[1][4]=pie[1][4];
        dp[1][5]=pie[1][5];
        dp[1][6]=pie[1][6];

        for(int i=2;i<=maxn;i++)
        {
            //最左和最右边的位置特殊考虑下,因为只能由两个位置转移过来。
            dp[i][0]=max(dp[i-1][0],dp[i-1][1]);//最左边
            if(dp[i][0]!=-1)
            dp[i][0]+=pie[i][0];

            dp[i][10]=max(dp[i-1][10],dp[i-1][9]);//最右边
            if(dp[i][10]!=-1)
            dp[i][10]+=pie[i][10];

            for(int j=1;j<=9;j++)
            {
                dp[i][j]=max(dp[i-1][j],dp[i-1][j-1]);
                dp[i][j]=max(dp[i][j],dp[i-1][j+1]);
                if(dp[i][j]!=-1)
                dp[i][j]+=pie[i][j];    
            }   
        }
        int ans=-1;
        for(int i=0;i<=10;i++)//最后遍历一下找最大值即可
        ans=max(ans,dp[maxn][i]);
        printf("%d\n",ans); 
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值