众所周知,双炮叠叠将是中国象棋中很厉害的一招必杀技。炮吃子时必须隔一个棋子跳吃,即俗称”炮打隔子”。
炮跟炮显然不能在一起打起来,于是rly一天借来了许多许多的炮在棋盘上摆了起来……他想知道,在N×M的矩形
方格中摆若干炮(可以不摆)使其互不吃到的情况下方案数有几种。
棋子都是相同的。
Input
一行,两个正整数N和M。
N<=100,M<=100
Output
一行,输出方案数mod 999983。
Sample Input
1 3
Sample Output
7
思路:每一行每一列的炮耳朵数量都不能超过两个。考虑用dp来做。
dp[i][j][k],表示到第i层,前面放置了一个炮的列的数量为 j,放置了两个炮的数量为k,放置了0个炮的数量为m-j-k的状态总数。第i层状态由第i-1层状态转移来,在第i层我们可以放一个炮,两个炮,或者一个都不放。具体转移方程看代码
代码如下
#include <iostream>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <cstring>
#include <queue>
#include <cstdio>
#include <map>
using namespace std;
#define LL long long int
const int mod=999983;
LL dp[105][105][105];
int sol(int x)
{
return x*(x-1)/2%mod;
}
int main()
{
int n,m;
while(scanf("%d%d",&n,&m)!=EOF)
{
dp[0][0][0]=1;
for(int i=1;i<=n;i++)
for(int j=0;j<=m;j++)
for(int k=0;k+j<=m;k++)
{
dp[i][j][k]=dp[i-1][j][k];//一个炮都不放
if(j>=1) dp[i][j][k]=(dp[i][j][k]+dp[i-1][j-1][k]*(m-j-k+1))%mod;//假设第i行摆放了一个炮,放在了没有炮的列上
if(j>=2) dp[i][j][k]=(dp[i][j][k]+dp[i-1][j-2][k]*sol(m-j-k+2))%mod;//假设第i行摆放了两个炮,放在了两个没有炮的列上
if(k>=1) dp[i][j][k]=(dp[i][j][k]+dp[i-1][j+1][k-1]*(j+1))%mod;//假设第i行放了一个,且放在了只有一个炮的列上
if(k>=1) dp[i][j][k]=(dp[i][j][k]+dp[i-1][j][k-1]*(m-j-k+1)*j)%mod;//假设第i行放了两个,第一个放在了没有炮的列,第二个放在了只有一个炮的列上
if(k>=2) dp[i][j][k]=(dp[i][j][k]+dp[i-1][j+2][k-2]*sol(j+2))%mod;//假设第i行放了两个,放在了两个只有一个炮的列上
}
int sum=0;
for(int i=0;i<=m;i++)
for(int j=0;j+i<=m;j++)
sum=(sum+dp[n][i][j])%mod;
printf("%d\n",sum);
}
return 0;
}