原根&离散对数
1.原根
1.定义:
定义Ordm(a)Ordm(a)为使得ad≡1(modm)ad≡1(modm)成立的最小的d(其中a和m互质)
由欧拉定理可知:
Ord≤Φ(m)Ord≤Φ(m)
当Ordm(a)=Φ(m)时,称a是模m意义下m的一个原根Ordm(a)=Φ(m)时,称a是模m意义下m的一个原根(记住原根是a,不是d!)
2.原根的性质:
1.具有原根的数字仅有以下几种形式:2,4,pn,2·pn2,4,pn,2·pn(p是奇质数)
2.一个数的最小原根的大小不超过 m14

本文简要介绍了原根和离散对数的概念,原根定义为模m意义下使得ad≡1(modm)的最小d,最小原根不超过m的1/4。离散对数是在模意义下求解特定方程的方法。文章列举了求解原根的步骤,包括判断、找最小原根和所有原根,并提供了离散对数的暴力法和BSGS算法。
最低0.47元/天 解锁文章
12

被折叠的 条评论
为什么被折叠?



