题意
给定一张边带权的无向图,求生成树的权值和是 k 的倍数的生成树个数模 p 的值。
n
≤
100
,
k
≤
100
,
p
m
o
d
  
k
=
1
n\leq 100,k\leq 100,p\mod k=1
n≤100,k≤100,pmodk=1
Sol
看见整除然后 p m o d    k = 1 p\mod k=1 pmodk=1 ,那么可以套个单位根反演。
我们要求的东西就是:
∑
E
[
k
∣
(
∑
e
∈
E
v
a
l
e
)
]
\sum_{E}[k|(\sum_{e\in E}val_e)]
∑E[k∣(∑e∈Evale)]
单位根反演一套:
1
k
∑
E
∑
i
=
0
k
−
1
w
k
(
∑
e
∈
E
v
a
l
e
)
i
\frac{1}{k}\sum_{E} \sum_{i=0}^{k-1} w_k^{(\sum_{e\in E}val_e)i}
k1∑E∑i=0k−1wk(∑e∈Evale)i
然后又是常规操作:
1
k
∑
i
=
0
k
−
1
∑
E
w
k
(
∑
e
∈
E
v
a
l
e
)
i
\frac{1}{k}\sum_{i=0}^{k-1}\sum_{E} w_k^{(\sum_{e\in E}val_e)i}
k1∑i=0k−1∑Ewk(∑e∈Evale)i
1
k
∑
i
=
0
k
−
1
∑
E
∏
e
∈
E
(
w
k
i
)
v
a
l
e
\frac{1}{k}\sum_{i=0}^{k-1}\sum_{E} \prod_{e\in E} (w_k^{i})^{val_e}
k1∑i=0k−1∑E∏e∈E(wki)vale
把一条边的边权看作 ( w k i ) v a l e (w_k^{i})^{val_e} (wki)vale 矩阵树定理求一下就做完了。
code:
#include<bits/stdc++.h>
#define Set(a,b) memset(a,b,sizeof(a))
using namespace std;
int mod;
template <typename T> inline void init(T&x){
x=0;char ch=getchar();bool t=0;
for(;ch>'9'||ch<'0';ch=getchar()) if(ch=='-') t=1;
for(;ch>='0'&&ch<='9';ch=getchar()) x=(x<<1)+(x<<3)+(ch-48);
if(t) x=-x;return;
}
typedef long long ll;
template <typename T>inline void Inc(T&x,int y){x+=y;if(x>=mod) x-=mod;return;}
template <typename T>inline void Dec(T&x,int y){x-=y;if(x < 0) x+=mod;return;}
template <typename T>inline int fpow(int x,T k){int ret=1;for(;k;k>>=1,x=(ll)x*x%mod) if(k&1) ret=(ll)ret*x%mod;return ret;}
int Sum(int x,int y){x+=y;if(x>=mod) return x-mod;return x;}
int Dif(int x,int y){x-=y;if(x < 0 ) return x+mod;return x;}
const int N=101;
int n,m,k,p,g;
struct edge{
int u,v,c;
}E[N*N];
namespace Matrix_Tree{
int a[N][N];
inline void Build(int w){
Set(a,0);
for(int i=1;i<=m;++i) {
int u=E[i].u,v=E[i].v,c=E[i].c;
int val=fpow(w,c);
Dec(a[u][v],val),Dec(a[v][u],val);
Inc(a[u][u],val),Inc(a[v][v],val);
}return;
}
inline int Gauss(int n){
int f=0;
for(int i=1;i<=n;++i) {
int p=i;
for(int j=i;j<=n;++j) {if(a[i][j]) {p=j;break;}}
if(p!=i) f^=1,swap(a[p],a[i]);
int inv=fpow(a[i][i],mod-2);
for(int j=i+1;j<=n;++j){
if(!a[j][i]) continue;
int t=Dif(0,(ll)a[j][i]*inv%mod);
for(int k=i;k<=n;++k) Inc(a[j][k],(ll)a[i][k]*t%mod);
}
}
int ret=1;
for(int i=1;i<=n;++i) ret=(ll)ret*a[i][i]%mod;
if(f) ret=Dif(0,ret);return ret;
}
}
inline void Getroot(int mod){
int x=mod-1;static int pri[50],cnt=0;
for(int i=2;i*i<=x;++i) if(x%i==0) {pri[++cnt]=i,x/=i;while(x%i==0) x/=i;}
for(g=2;;++g){bool fl=1;
for(int i=1;i<=cnt;++i) if(fpow(g,(mod-1)/pri[i])==1) {fl=0;break;}
if(fl)return;
}
}
int main()
{
init(n),init(m),init(k),init(p);
mod=p;Getroot(mod);int u,v,c;
for(int i=1;i<=m;++i){init(u),init(v),init(c);E[i]=(edge){u,v,c};}
int W=fpow(g,(mod-1)/k);
int w=1,ans=0;
for(int i=0;i<k;++i,w=(ll)w*W%mod) {
Matrix_Tree::Build(w);
Inc(ans,Matrix_Tree::Gauss(n-1));
}
ans=(ll)ans*fpow(k,mod-2)%mod;
cout<<ans<<endl;
return 0;
}