课程笔记
-
计算机视觉=输入(认知神经科学-理论, 运用方法&算法, 硬件)+输出(机器人)
-
课程:图像处理-CS131,图像结构-CS231a,图像理论-CS230/CS231n
-
Q-象棋与人工智能的关系?
IBM-深蓝,Google-AlphaGo >> 机器赢得象棋胜利 = 强大的搜索算法
-
目标:语义鸿沟,即建立图像像素核语义间的关系
-
发展过程:系统出现-物种大繁荣 >> 理论研究-猫视觉神经 >> 积木世界 >> MIT图像处理暑期
-
计算机视觉先驱-David Marr提出的三大板块:计算理论,表达&算法,硬件实现
- 计算理论:目的?已知与可施加的约束?
- 表达&算法:输入输出的表达?算法计算预期结果?
- 硬件实现:算法与硬件的关联?硬件加速算法?
- 视觉表达发展阶段:输入图像 >> 边缘图 >> 2.5D图 >> 建立3D模型
- 图像信息 = 三维场景结构 + 语义信息
- 深度学习基石 = 算法 + 数据 + 算力
本节思考
序号 | 提问 | 回答 |
01 | 请解释图像表达的4个阶段在计算机视觉中的作用 | 你来回答,下篇笔记中会公布 |
02 | 为什么David Marr提出的三大板块是CV的先驱? 背后的原因是什么? | 你来回答,下篇笔记中会公布 |
03 | David Marr提出的三个部分在当今时代是否适用? | 你来回答,下篇笔记中会公布 |
04 | 为什么会出现语义鸿沟?原因是什么? | 你来回答,下篇笔记中会公布 |
05 | 图像分割和图像识别有什么本质的区别吗? | 你来回答,下篇笔记中会公布 |
06 | 为什么说在计算机视觉中,图像信息等于三维场景结构加上语义信息? | 你来回答,下篇笔记中会公布 |