人脸识别
文章平均质量分 87
一休Q_Q
大模型、机器学习、知识图谱、深度学习、自然语言处理
展开
-
DeepID2人脸识别算法学习
DeepID2 验证信号 认证信号原创 2016-03-30 16:40:49 · 4179 阅读 · 0 评论 -
DeepId人脸识别算法学习
DeepID的目标是人脸验证(判断两张图片是否是一个人),同时衍生出人脸识别(多次人脸验证)。使用近期比较火的卷积神经网络学习特征,输入一张图片,产出160维的特征向量,然后使用现成的浅层机器学习组合贝叶斯进行分类。由于卷积神经网络计算的特征紧凑且区分度大,所以得到的效果较好。原创 2016-03-29 11:40:40 · 11029 阅读 · 0 评论 -
DeepID2+人脸识别算法学习
DeepID2+在DeepID2的基础上,继续对网络结构做了修改,同时增加了对卷积圣经网络的分析,发现了几个特征:(1)适度稀疏,及时将神经元二值化之后,认证效果依然很好;(2)选择性,高层神经元对认证对象具有高度敏感性,对于同一个人很多神经元会持续保持激活或者抑制状态;(3)和鲁棒性,对于水平遮挡或者随机块遮挡,具有较高的鲁棒性,及时只剩额头和头发,仍然可以达到88.2%的准确率。原创 2016-04-01 15:34:46 · 8698 阅读 · 3 评论 -
SeetaFace中科院开源人脸项目Ubuntu下编译
SeetaFace 人脸引擎 ubuntu 14.04 编译执行原创 2016-12-07 14:54:47 · 7059 阅读 · 8 评论