http://www.elijahqi.win/2018/01/09/bzoj1131-poi2008sta/
Description
给出一个N个点的树,找出一个点来,以这个点为根的树时,所有点的深度之和最大
Input
给出一个数字N,代表有N个点.N<=1000000 下面N-1条边.
Output
输出你所找到的点,如果具有多个解,请输出编号最小的那个.
Sample Input
8
1 4
5 6
4 5
6 7
6 8
2 4
3 4
Sample Output
7
HINT
Source
我记得在北京八十可能讲过类似的题 其中的一部分要利用这个dp gg
大概就是首先我先dfs一下我每个子树的size然后还有他们的假的dp值 dp[i]表示以i为节点 他子树的深度是多少 经过这一次dfs 我一号节点的dp值这时候是正确的了 我再dfs2一下 做一下 子树的dp值如何做 考虑到 我从当前x->y节点我相当于经历了 我n-size[y]都增加了 并且我size[y]整体-1 那么显然我新的dp[y]=dp[x]+n-size[y]<<1;最后输出倒序扫一遍即可
#include<cstdio>
#include<algorithm>
#define N 1100000
#define ll long long
using namespace std;
inline char gc(){
static char now[1<<16],*S,*T;
if (T==S){T=(S=now)+fread(now,1,1<<16,stdin);if (T==S) return EOF;}
return *S++;
}
inline int read(){
int x=0,f=1;char ch=gc();
while(ch<'0'||ch>'9') {if (ch=='-') f=-1;ch=gc();}
while(ch<='9'&&ch>='0') x=x*10+ch-'0',ch=gc();
return x*f;
}
int n,fa[N],size[N],dep[N],h[N],num;ll dp[N];
struct node{
int y,next;
}data[N<<1];
inline void dfs(int x){
size[x]=1;dp[x]+=dep[x];
for (int i=h[x];i;i=data[i].next){
int y=data[i].y;if (fa[x]==y) continue;fa[y]=x;dep[y]=dep[x]+1;
dfs(y);size[x]+=size[y];dp[x]+=dp[y];
}
}
inline void dfs2(int x){
for (int i=h[x];i;i=data[i].next){
int y=data[i].y;if(fa[x]==y) continue;dp[y]=dp[x]+n-size[y]*2;dfs2(y);
}
}
int main(){
freopen("bzoj1131.in","r",stdin);
n=read();
for (int i=1;i<n;++i){
int x=read(),y=read();
data[++num].y=y;data[num].next=h[x];h[x]=num;
data[++num].y=x;data[num].next=h[y];h[y]=num;
}dfs(1);dfs2(1);ll max1=0;int id=0;
for (int i=n;i>=1;--i) if (dp[i]>=max1) max1=dp[i],id=i;printf("%d",id);
return 0;
}