bzoj1014 [JSOI2008]火星人prefix

31 篇文章 0 订阅
25 篇文章 0 订阅

http://www.elijahqi.win/2018/01/23/bzoj1014/
Description

  火星人最近研究了一种操作:求一个字串两个后缀的公共前缀。比方说,有这样一个字符串:madamimadam,
我们将这个字符串的各个字符予以标号:序号: 1 2 3 4 5 6 7 8 9 10 11 字符 m a d a m i m a d a m 现在,
火星人定义了一个函数LCQ(x, y),表示:该字符串中第x个字符开始的字串,与该字符串中第y个字符开始的字串
,两个字串的公共前缀的长度。比方说,LCQ(1, 7) = 5, LCQ(2, 10) = 1, LCQ(4, 7) = 0 在研究LCQ函数的过程
中,火星人发现了这样的一个关联:如果把该字符串的所有后缀排好序,就可以很快地求出LCQ函数的值;同样,
如果求出了LCQ函数的值,也可以很快地将该字符串的后缀排好序。 尽管火星人聪明地找到了求取LCQ函数的快速
算法,但不甘心认输的地球人又给火星人出了个难题:在求取LCQ函数的同时,还可以改变字符串本身。具体地说
,可以更改字符串中某一个字符的值,也可以在字符串中的某一个位置插入一个字符。地球人想考验一下,在如此
复杂的问题中,火星人是否还能够做到很快地求取LCQ函数的值。
Input

  第一行给出初始的字符串。第二行是一个非负整数M,表示操作的个数。接下来的M行,每行描述一个操作。操
作有3种,如下所示
1、询问。语法:Qxy,x,y均为正整数。功能:计算LCQ(x,y)限制:1<=x,y<=当前字符串长度。
2、修改。语法:Rxd,x是正整数,d是字符。功能:将字符串中第x个数修改为字符d。限制:x不超过当前字
符串长度。
3、插入:语法:Ixd,x是非负整数,d是字符。功能:在字符串第x个字符之后插入字符d,如果x=0,则在字
符串开头插入。限制:x不超过当前字符串长度
Output

  对于输入文件中每一个询问操作,你都应该输出对应的答案。一个答案一行。
Sample Input
madamimadam
7
Q 1 7
Q 4 8
Q 10 11
R 3 a
Q 1 7
I 10 a
Q 2 11
Sample Output
5
1
0
2
1
HINT

1、所有字符串自始至终都只有小写字母构成。

2、M<=150,000

3、字符串长度L自始至终都满足L<=100,000

4、询问操作的个数不超过10,000个。

对于第1,2个数据,字符串长度自始至终都不超过1,000

对于第3,4,5个数据,没有插入操作。

之前听闻过 说这是个平衡树的题?今天想了想嗯??这怎么做 哦 对对哦这个可以那splay维护下hash值的 怎么搞 我首先建一棵平衡树出来 然后同时更新的时候计算hash值 怎么算 就hash[l]*(size[r]+1)+hash[x]*size[r]+hash[r] 然后怎么算答案 就是我们针对每个询问我去二分一下长度 然后每次都把这个长度的取出来比较下hash值即可 其他操作都同splay的基本操作

#include<cstdio>
#include<cstring>
#include<algorithm>
#define N 110000
using namespace std;
inline int read(){
    int x=0,f=1;char ch=getchar();
    while(ch<'0'||ch>'9') {if (ch=='-') f=-1;ch=getchar();}
    while(ch<='9'&&ch>='0') x=x*10+ch-'0',ch=getchar();
    return x*f;
}
int n,c[N][2],fa[N],size[N],root,cnt,m;
char s[N],v[N],op[10];
unsigned int hs[N],p[N];
inline void update(int x){
    int l=c[x][0],r=c[x][1];
    size[x]=size[l]+size[r]+1;
    hs[x]=hs[l]*(p[size[r]+1])+p[size[r]]*(v[x]-'a'+1)+hs[r];
}
inline void build(int f,int l,int r){
    if (l>r) return;int mid=l+r>>1;
    c[f][mid>f]=mid;fa[mid]=f;v[mid]=s[mid];hs[mid]=s[mid]-'a'+1;
    if (l==r) {size[l]=1;return;}
    build(mid,l,mid-1);build(mid,mid+1,r);update(mid);
} 
inline void rotate(int x,int &tar){
    int y=fa[x],z=fa[y];
    if (y==tar) tar=x;else c[z][c[z][1]==y]=x;
    int l=c[y][1]==x,r=l^1;
    fa[c[x][r]]=y;fa[y]=x;fa[x]=z;
    c[y][l]=c[x][r];c[x][r]=y;update(y);update(x);
}
inline void splay(int x,int &tar){
    while(x!=tar){
        int y=fa[x],z=fa[y];
        if (y!=tar){
            if (c[y][0]==x^c[z][0]==y) rotate(x,tar);else rotate(y,tar);
        }rotate(x,tar);
    }
}
inline int find(int x,int sz){
    int l=c[x][0],r=c[x][1];
    if (size[l]+1==sz) return x;
    if (sz<=size[l]) return find(l,sz);else return find(r,sz-size[l]-1);
}
inline int split(int x,int y){
    int xx=find(root,x),yy=find(root,y);
    splay(yy,root);splay(xx,c[root][0]);return c[xx][1];
}
inline bool check(int x,int y,int mid){
    int xx=split(x,x+mid+1),tmp=hs[xx];
    int yy=split(y,y+mid+1),tmp1=hs[yy];
    return tmp==tmp1;
}
inline void print(int x){
    if (c[x][0]) print(c[x][0]);
    printf("%c %u\n",v[x],hs[x]);
    if (c[x][1]) print(c[x][1]);
}
int main(){
    freopen("bzoj1014.in","r",stdin);
    scanf("%s",s+2);n=strlen(s+2);root=n+3>>1;p[0]=1;m=read();cnt=n+2;
    for (int i=1;i<=100100;++i) p[i]=p[i-1]*27;build(0,1,n+2);
//  print(root);puts("");
    for (int i=1;i<=m;++i){
        scanf("%s",op);
        if (op[0]=='Q'){
            int x=read(),y=read();int l=1,r=min(cnt-x-1,cnt-y-1);
            while(l<=r){
                int mid=l+r>>1;
                if (check(x,y,mid)) l=mid+1;else r=mid-1;
            } printf("%d\n",r);
        }
        if (op[0]=='R'){
            int x=read();char cc[2];scanf("%s",cc);
            int tmp=split(x,x+2);v[tmp]=cc[0];hs[tmp]=cc[0]-'a'+1;
            update(fa[tmp]);update(root);
        }
        if (op[0]=='I'){
            int x=read()+1;char cc[2];scanf("%s",cc);
            int xx=find(root,x),yy=find(root,x+1);splay(yy,root);splay(xx,c[root][0]);
            v[++cnt]=cc[0];hs[cnt]=cc[0]-'a'+1;size[cnt]=1;fa[cnt]=xx;c[xx][1]=cnt;
            update(xx);update(root);
        } 
    }
    return 0;
}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值