http://www.elijahqi.win/2018/02/20/bzoj1034/
Description
第XXXX届NOI期间,为了加强各省选手之间的交流,组委会决定组织一场省际电子竞技大赛,每一个省的代表
队由n名选手组成,比赛的项目是老少咸宜的网络游戏泡泡堂。每一场比赛前,对阵双方的教练向组委会提交一份
参赛选手的名单,决定了选手上场的顺序,一经确定,不得修改。比赛中,双方的一号选手,二号选手……,n号
选手捉对厮杀,共进行n场比赛。每胜一场比赛得2分,平一场得1分,输一场不得分。最终将双方的单场得分相加
得出总分,总分高的队伍晋级(总分相同抽签决定)。作为浙江队的领队,你已经在事先将各省所有选手的泡泡堂水
平了解的一清二楚,并将其用一个实力值来衡量。为简化问题,我们假定选手在游戏中完全不受任何外界因素干扰
,即实力强的选手一定可以战胜实力弱的选手,而两个实力相同的选手一定会战平。由于完全不知道对手会使用何
种策略来确定出场顺序,所以所有的队伍都采取了这样一种策略,就是完全随机决定出场顺序。当然你不想这样不
明不白的进行比赛。你想事先了解一下在最好与最坏的情况下,浙江队最终分别能得到多少分。
Input
输入的第一行为一个整数n,表示每支代表队的人数。接下来n行,每行一个整数,描述了n位浙江队的选手的
实力值。接下来n行,每行一个整数,描述了你的对手的n位选手的实力值。 20%的数据中,1<=n<=10; 40%的数
据中,1<=n<=100; 60%的数据中,1<=n<=1000; 100%的数据中,1<=n<=100000,且所有选手的实力值在0到100
00000之间。
Output
包括两个用空格隔开的整数,分别表示浙江队在最好与最坏的情况下分别能得多少分。不要在行末输出多余的
空白字符。
Sample Input
2
1
3
2
4
Sample Output
2 0
样例说明
我们分别称4位选手为A,B,C,D。则可能出现以下4种对战方式,最好情况下可得2分,最坏情况下得0分。
一 二 三 四
浙江 ??? 结果 浙江 ??? 结果 浙江 ??? 结果 浙江 ??? 结果
一号选手 A C 负 A D 负 B C 胜 B D 负
二号选手 B D 负 B C 胜 A D 负 A C 负
总得分 0 2 2 0
首先可以猜想到 我一定是用我的强的去战胜对方强的会好 用我的弱的战胜对方弱的会好 那么先排个序用指针将两端符合这种情况的先卡死即可那么剩下中间这一段一定是我的强的比不过对方的强的 我的弱的比不过对方的弱的 这时候就有几种考虑 我两个平局 或者是我牺牲我的弱的和对方强的比 然后再用我强的和对方弱的比 获得比分那这部分如何贪心考虑:如果自己放弃平局的机会,让给更强的人去打对方最弱,可能会更合适。
这前提是我方更强的人打不过对方其他人 在这种情况下我需要先能用我强的和对方弱的打就先上不行再考虑平局的情况
由于我最后的总得分是2*n 那么最少得分就考虑对方最多的分减去即可
#include<cstdio>
#include<algorithm>
#define N 110000
using namespace std;
int a[N],b[N],n;
inline char gc(){
static char now[1<<16],*S,*T;
if (T==S){T=(S=now)+fread(now,1,1<<16,stdin);if (T==S) return EOF;}
return *S++;
}
inline int read(){
int x=0,f=1;char ch=gc();
while(ch<'0'||ch>'9') {if (ch=='-') f=-1;ch=gc();}
while(ch<='9'&&ch>='0') x=x*10+ch-'0',ch=gc();
return x*f;
}
inline int solve(int *a,int *b){
int l1=1,r1=n,l2=1,r2=n,ans=0;
while(l1<=r1){
if(a[l1]>b[l2]) ans+=2,++l1,++l2;
else if(a[r1]>b[r2]) ans+=2,--r1,--r2;
else ans+=a[l1]==b[r2],++l1,--r2;
}return ans;
}
int main(){
//freopen("bzoj1034.in","r",stdin);
n=read();
for (int i=1;i<=n;++i) a[i]=read();
for (int i=1;i<=n;++i) b[i]=read();
sort(a+1,a+n+1);sort(b+1,b+n+1);
printf("%d %d",solve(a,b),2*n-solve(b,a));
return 0;
}