http://www.elijahqi.win/2017/07/09/luogu1962/
题目背景
大家都知道,斐波那契数列是满足如下性质的一个数列:
• f(1) = 1
• f(2) = 1
• f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数)
题目描述
请你求出 f(n) mod 1000000007 的值。
输入输出格式
输入格式:
·第 1 行:一个整数 n
输出格式:
第 1 行: f(n) mod 1000000007 的值
输入输出样例
输入样例#1:
5
输出样例#1:
5
输入样例#2:
10
输出样例#2:
55
说明
对于 60% 的数据: n ≤ 92
对于 100% 的数据: n在long long(INT64)范围内。
4.斐波那契
#include<cstdio>
#include<cstring>
#define N 1000000007
struct matrix{
int f[3][3],l,c;
}a,c,ans;
long long n;
void build(){
a.l=2;a.c=2;
a.f[1][1]=1;a.f[1][2]=1;
a.f[2][1]=1;a.f[2][2]=0;
}
matrix multiply(matrix a,matrix b){
matrix c;memset(c.f,0,sizeof(c.f));
c.l=a.l;c.c=b.c;
for (int i=1;i<=c.l;++i){
for (int j=1;j<=c.c;++j){
for (int z=1;z<=c.l;++z){
c.f[i][j]+=((long long)a.f[i][z]*b.f[z][j]%N);
c.f[i][j]%=N;
}
}
}
return c;
}
matrix pow(matrix a,long long b){
matrix r,base=a;
r.f[1][1]=1;r.f[1][2]=0;
r.f[2][1]=0;r.f[2][2]=1;r.l=2;r.c=2;
while (b!=0){
if (b&1) r=multiply(r,base);
base=multiply(base,base);
b>>=1;
}
return r;
}
int main(){
freopen("1962.in","r",stdin);
freopen("1962.out","w",stdout);
scanf("%lld",&n);
build();
if (n>2) ans=pow(a,n-2);else {
printf("1");return 0;
}
c.f[1][1]=1;c.f[2][1]=1;
c.l=2;c.c=1;
ans=multiply(ans,c);
printf("%d",ans.f[1][1]);
}