luogu1962

http://www.elijahqi.win/2017/07/09/luogu1962/
题目背景

大家都知道,斐波那契数列是满足如下性质的一个数列:

• f(1) = 1

• f(2) = 1

• f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数)

题目描述

请你求出 f(n) mod 1000000007 的值。

输入输出格式

输入格式:

·第 1 行:一个整数 n

输出格式:

第 1 行: f(n) mod 1000000007 的值

输入输出样例

输入样例#1:

5
输出样例#1:

5
输入样例#2:

10
输出样例#2:

55
说明

对于 60% 的数据: n ≤ 92

对于 100% 的数据: n在long long(INT64)范围内。

4.斐波那契


#include<cstdio>
#include<cstring>
#define N 1000000007
struct matrix{
    int f[3][3],l,c;
}a,c,ans;
long long n;
void build(){
    a.l=2;a.c=2;
    a.f[1][1]=1;a.f[1][2]=1;
    a.f[2][1]=1;a.f[2][2]=0;
}
matrix multiply(matrix a,matrix b){
    matrix c;memset(c.f,0,sizeof(c.f));
    c.l=a.l;c.c=b.c;
    for (int i=1;i<=c.l;++i){
        for (int j=1;j<=c.c;++j){
            for (int z=1;z<=c.l;++z){
                c.f[i][j]+=((long long)a.f[i][z]*b.f[z][j]%N);
                c.f[i][j]%=N;
            }
        }
    }
    return c;
}
matrix pow(matrix a,long long b){
    matrix r,base=a;
    r.f[1][1]=1;r.f[1][2]=0;
    r.f[2][1]=0;r.f[2][2]=1;r.l=2;r.c=2;
    while (b!=0){
        if (b&1) r=multiply(r,base);
        base=multiply(base,base);
        b>>=1;
    }
    return r;
}
int main(){
    freopen("1962.in","r",stdin);
    freopen("1962.out","w",stdout);
    scanf("%lld",&n);
    build();
    if (n>2) ans=pow(a,n-2);else {
        printf("1");return 0;
    }
    c.f[1][1]=1;c.f[2][1]=1;
    c.l=2;c.c=1;
    ans=multiply(ans,c);
    printf("%d",ans.f[1][1]);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值