bzoj4999 This Problem Is Too Simple!

http://www.elijahqi.win/archives/769
Description

给您一颗树,每个节点有个初始值。
现在支持以下两种操作:
1. C i x(0<=x<2^31) 表示将i节点的值改为x。
2. Q i j x(0<=x<2^31) 表示询问i节点到j节点的路径上有多少个值为x的节点。

Input

第一行有两个整数N,Q(1 ≤N≤ 100,000;1 ≤Q≤ 200,000),分别表示节点个数和操作个数。
下面一行N个整数,表示初始时每个节点的初始值。
接下来N-1行,每行两个整数x,y,表示x节点与y节点之间有边直接相连(描述一颗树)。
接下来Q行,每行表示一个操作,操作的描述已经在题目描述中给出。

Output

对于每个Q输出单独一行表示所求的答案。

Sample Input

5 6
10 20 30 40 50
1 2
1 3
3 4
3 5
Q 2 3 40
C 1 40
Q 2 3 40
Q 4 5 30
C 3 10
Q 4 5 30
Sample Output

0
1
1
0
终于搞定了这个数据结构题,查错实在是太难了
首先第一眼看到这个题,我脑中想到的就是树上莫队,类似糖果公园那题,但是树上莫队复杂度是o(n三分之五)次
这题时间是10s 可能会被卡
后来leoly(%%%)上课讲这个是树链剖分 然后这几天默默写了zjoi2008树的统计
http://www.elijahqi.win/2017/09/08/bzoj1036luogu2590-zjoi2008树的统计/
树的统计那题,轻边我直接加上a[i]那个点的权志
然而这题相当于对于每一个颜色,建立一棵线段树(动态加点),所以对于统计轻边的优化需要开很多内存,于是放弃
讲一讲这题的几个坑点,首先root不能开到N因为后面会针对颜色进行修改,假如只开到N显然是不行的
然后关于tree[]和主席树一样开40*N即可,一般来说是nlogn但是由于存在颜色修改,会存在废弃的树所以开大一些

然后就是注意修改操作的时候l,r
if (x<=mid) change(tree[rt].left,x,val,l,mid);else change(tree[rt].right,x,val,mid+1,r);
剩下我觉得就是把树链剖分打熟就好

#include<cstdio>
#include<map>
#define N 110000
inline int read(){
    int x=0,f=1;char ch=getchar();
    while (ch<'0'||ch>'9'){if (ch=='-') f=-1;ch=getchar();}
    while (ch<='9'&&ch>='0'){x=x*10+ch-'0';ch=getchar();}
    return x*f;
}
struct node{
    int left,right,sum;
}tree[40*N];
struct node1{
    int y,next;
}data[N<<1];
int num,n,m,a[N],cnt,num1,size[N],dep[N],fa[N],h[N],son[N],id[N],tp[N],root[3*N];
std::map<int,int> mm;
inline void swap(int &x,int &y){
    x^=y;y^=x;x^=y;
}
void dfs1(int x){
    size[x]=1;
    for (int i=h[x];i;i=data[i].next){
        int y=data[i].y;
        if (fa[x]==y) continue;
        dep[y]=dep[x]+1;fa[y]=x;dfs1(y);size[x]+=size[y];
        if (size[y]>size[son[x]]) son[x]=y;
    }
}
void dfs2(int x,int top){
    id[x]=++num1;tp[x]=top;
    if (son[x]) dfs2(son[x],top);
    for (int i=h[x];i;i=data[i].next){
        int y=data[i].y;
        if (y==son[x]||y==fa[x]) continue;
        dfs2(y,y);
    }
}
inline void update(int x){
    int l=tree[x].left,r=tree[x].right;
    tree[x].sum=tree[l].sum+tree[r].sum;
}
void change(int &rt,int x,int val,int l,int r){
    if (!rt) rt=++cnt;
    if(l==r) {tree[rt].sum+=val;return;}
    int mid=l+r>>1;
    if (x<=mid) change(tree[rt].left,x,val,l,mid);else change(tree[rt].right,x,val,mid+1,r);
    update(rt);
}
int qs(int rt,int l1,int r1,int l,int r){//l1,r1代表需要查询的区间 
    if(l1<=l&&r1>=r)return tree[rt].sum;
    int mid=l+r>>1;
    int tmp=0;
    if (l1<=mid) tmp+=qs(tree[rt].left,l1,r1,l,mid);
    if (r1>mid) tmp+=qs(tree[rt].right,l1,r1,mid+1,r);
    return tmp;
}
int main(){
    freopen("bzoj4999.in","r",stdin);
    n=read();m=read();
    for (int i=1;i<=n;++i) {a[i]=read();if (!mm[a[i]]) mm[a[i]]=++num;  }
    for (int i=1;i<n;++i){
        int x=read(),y=read();
        data[++num1].y=y;data[num1].next=h[x];h[x]=num1;
        data[++num1].y=x;data[num1].next=h[y];h[y]=num1;
    }num1=0;
    dep[1]=1;dfs1(1);dfs2(1,1);//for(int i=1;i<=n;++i) printf("%d ",id[i]);printf("sdfds\n");
    for (int i=1;i<=n;++i) change(root[mm[a[i]]],id[i],1,1,n);
    //for (int i=1;i<=n;++i) printf("%d ",root[i]);
    char str1[2];
    for (int i=1;i<=m;++i){
        scanf("%s",str1);
        if (str1[0]=='Q'){
            int x=read(),y=read(),z=read();
            if (!mm[z]) {printf("0\n");continue;}
            int tmp=0;
            while (tp[x]!=tp[y]){
                if (dep[tp[x]]<dep[tp[y]]) swap(x,y);
                tmp+=qs(root[mm[z]],id[tp[x]],id[x],1,n);
                x=fa[tp[x]];
            }
            if(id[x]>id[y]) swap(x,y);
            tmp+=qs(root[mm[z]],id[x],id[y],1,n);
            printf("%d\n",tmp);
        }else{
            int x=read(),z=read();
            change(root[mm[a[x]]],id[x],-1,1,n);a[x]=z;
            if (!mm[a[x]]) mm[a[x]]=++num;
            change(root[mm[a[x]]],id[x],1,1,n);
        }
    }
    return 0;
}
发布了1259 篇原创文章 · 获赞 22 · 访问量 12万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览