hdu4718

http://www.elijahqi.win/archives/839
Problem Description
For a sequence S1, S2, … , SN, and a pair of integers (i, j), if 1 <= i <= j <= N and Si < Si+1 < Si+2 < … < Sj-1 < Sj , then the sequence Si, Si+1, … , Sj is a CIS (Continuous Increasing Subsequence). The longest CIS of a sequence is called the LCIS (Longest Continuous Increasing Subsequence).
Now we consider a tree rooted at node 1. Nodes have values. We have Q queries, each with two nodes u and v. You have to find the shortest path from u to v. And write down each nodes’ value on the path, from u to v, inclusive. Then you will get a sequence, and please show us the length of its LCIS.

Input
The first line has a number T (T <= 10) , indicating the number of test cases.
For each test case, the first line is a number N (N <= 105), the number of nodes in the tree.
The second line comes with N numbers v1, v2, v3 … , vN, describing the value of node 1 to node N. (1 <= vi <= 109)
The third line comes with N - 1 numbers p2, p3, p4 … , pN, describing the father nodes of node 2 to node N. Node 1 is the root and will have no father.
Then comes a number Q, it is the number of queries. (Q <= 105)
For next Q lines, each with two numbers u and v. As described above.

Output
For test case X, output “Case #X:” at the first line.
Then output Q lines, each with an answer to the query.
There should be a blank line BETWEEN each test case.

Sample Input
1
5
1 2 3 4 5
1 1 3 3
3
1 5
4 5
2 5

Sample Output
Case #1:
3
2
3

我只能说自己真是渣渣,蒟蒻啊qwq 写了这么久才过

这题要注意输出格式,这里不详细谈了

谈下关于线段树这个有向合并 关于这个最长子序列,要求必须连续,所以我们需要记录lmax(从左端点开始的最长递升)lmax1(从左端点开始的最长递降) rmax从右端点开始的最长递升 rmax1从右端点开始的最长递降,同时还要记录左右端点分别是什么值,方便后面连接使用

不仅左端递升等于左端的lenth并且左端的rn得小于右端的ln才能连过去,其他同理

关于树上的操作,因为,我们做ansl的时候是从深搜序小的做到深搜序大的 所以整个顺序反了

根据我们的定义只需要直接交换左右ans,ans1 ans是递升最优答案,ans1是递降最优答案

还有左右分别的递降递升最长直接交换就可以

#include<cstdio>
#include<algorithm>
#include<cstring>
#define N 110000
#define inf 0x7fffffff
using namespace std;
inline int read(){
    int x=0;char ch=getchar();
    while (ch<'0'||ch>'9') ch=getchar();
    while (ch<='9'&&ch>='0'){x=x*10+ch-'0';ch=getchar();}
    return x;
}
struct node{
    int y,next;
}data[N<<1];
struct node1{
    int len,lmax,rmax,lmax1,rmax1,ln,rn,ans,ans1;
    node1(){
        len=lmax1=rmax1=lmax=rmax=ln=rn=ans=ans1=0;
    }
};
struct node2{
    int l,r,left,right,lmax,lmax1,rmax1,rmax,ans,ans1,ln,rn;
}tree[N<<2];
int size[N],id[N],fa[N],son[N],tp[N],a[N],dep[N],h[N],cnt,root,n,num,m,w[N];
void dfs1(int x){
    size[x]=1;
    for (int i=h[x];i;i=data[i].next){
        int y=data[i].y;
        if(fa[x]==y) continue;
        dep[y]=dep[x]+1;fa[y]=x;dfs1(y);size[x]+=size[y];
        if (size[y]>size[son[x]]) son[x]=y;
    }
}
void dfs2(int x,int top){
    id[x]=++cnt;tp[x]=top;w[cnt]=a[x];
    if (son[x]) dfs2(son[x],top);
    for (int i=h[x];i;i=data[i].next){
        int y=data[i].y;
        if (y==fa[x]||y==son[x]) continue;
        dfs2(y,y);
    }
}
inline void update(int x){
    int l=tree[x].left,r=tree[x].right;int tmp=0,tmp1=0;
    if (tree[l].rn<tree[r].ln) tmp=tree[l].rmax1+tree[r].lmax;
    if (tree[l].rn>tree[r].ln) tmp1=tree[l].rmax+tree[r].lmax1;
    tree[x].ans=max(tmp,max(tree[l].ans,tree[r].ans));
    tree[x].ans1=max(tmp1,max(tree[l].ans1,tree[r].ans1));int len1=tree[l].r-tree[l].l+1,len2=tree[r].r-tree[r].l+1;
    if(len1==tree[l].lmax&&tree[l].rn<tree[r].ln) tree[x].lmax=len1+tree[r].lmax;else tree[x].lmax=tree[l].lmax;
    if (len1==tree[l].lmax1&&tree[l].rn>tree[r].ln) tree[x].lmax1=len1+tree[r].lmax1;else tree[x].lmax1=tree[l].lmax1;
    if(len2==tree[r].rmax&&tree[l].rn>tree[r].ln) tree[x].rmax=len2+tree[l].rmax;else tree[x].rmax=tree[r].rmax;
    if (len2==tree[r].rmax1&&tree[l].rn<tree[r].ln) tree[x].rmax1=len2+tree[l].rmax1;else tree[x].rmax1=tree[r].rmax1;
    tree[x].ln=tree[l].ln;tree[x].rn=tree[r].rn;
}
void build(int &x,int l,int r){
    x=++cnt;tree[x].l=l;tree[x].r=r;
    if(l==r){
        tree[x].ln=tree[x].rn=w[l];tree[x].lmax=tree[x].rmax=tree[x].lmax1=tree[x].rmax1=1;tree[x].left=tree[x].right=0;
        tree[x].ans=tree[x].ans1=1;return;
    }
    int mid=l+r>>1;
    build(tree[x].left,l,mid);build(tree[x].right,mid+1,r);
    update(x);
}
inline node1 update1(node1 tmp1,node1 tmp2){
    node1 ans1;int tmp=0,tmpp=0;
    if (!tmp1.len) return tmp2;
    if (!tmp2.len) return tmp1;
    ans1.len=tmp1.len+tmp2.len;
    if (tmp1.rn<tmp2.ln) tmp=tmp1.rmax1+tmp2.lmax;
    if (tmp1.rn>tmp2.ln) tmpp=tmp1.rmax+tmp2.lmax1;
    ans1.ans=max(tmp,max(tmp1.ans,tmp2.ans));
    ans1.ans1=max(tmpp,max(tmp1.ans1,tmp2.ans1));
    if(tmp1.len==tmp1.lmax&&tmp1.rn<tmp2.ln) ans1.lmax=tmp1.len+tmp2.lmax;else ans1.lmax=tmp1.lmax;
    if (tmp1.len==tmp1.lmax1&&tmp1.rn>tmp2.ln) ans1.lmax1=tmp1.len+tmp2.lmax1;else ans1.lmax1=tmp1.lmax1;
    if(tmp2.len==tmp2.rmax&&tmp1.rn>tmp2.ln) ans1.rmax=tmp2.len+tmp1.rmax;else ans1.rmax=tmp2.rmax;
    if (tmp2.len==tmp2.rmax1&&tmp1.rn<tmp2.ln) ans1.rmax1=tmp2.len+tmp1.rmax1;else ans1.rmax1=tmp2.rmax1;
    ans1.ln=tmp1.ln;ans1.rn=tmp2.rn;
    return ans1;
}
node1 query(int rt,int l,int r){
    if(l<=tree[rt].l&&r>=tree[rt].r){
        node1 tmp;tmp.lmax=tree[rt].lmax;tmp.lmax1=tree[rt].lmax1;tmp.ans=tree[rt].ans;tmp.ans1=tree[rt].ans1;
        tmp.rmax=tree[rt].rmax;tmp.rmax1=tree[rt].rmax1;tmp.ln=tree[rt].ln;tmp.rn=tree[rt].rn;
        tmp.len=tree[rt].r-tree[rt].l+1;
        return tmp;
    }
    int mid=(tree[rt].l+tree[rt].r)>>1;
    node1 tmp1;node1 tmp2;
    if (l<=mid) tmp1=query(tree[rt].left,l,r);
    if (r>mid) tmp2=query(tree[rt].right,l,r);
    return update1(tmp1,tmp2);
}
void solve(int x,int y){
    node1 ansl,ansr;
    while (tp[x]!=tp[y]){
        if(dep[tp[x]]>dep[tp[y]]){
            ansl=update1(query(root,id[tp[x]],id[x]),ansl);
            x=fa[tp[x]];
        }else{
            ansr=update1(query(root,id[tp[y]],id[y]),ansr);
            y=fa[tp[y]];
        }
    }
    swap(ansl.ans,ansl.ans1);swap(ansl.ln,ansl.rn);swap(ansl.lmax,ansl.rmax);swap(ansl.lmax1,ansl.rmax1);
    if (id[x]<id[y]){
        ansl=update1(ansl,query(root,id[x],id[y]));
        ansl=update1(ansl,ansr);    
    }else{
        node1 tmpp=query(root,id[y],id[x]);
        swap(tmpp.ans,tmpp.ans1);swap(tmpp.ln,tmpp.rn);swap(tmpp.lmax,tmpp.rmax);swap(tmpp.lmax1,tmpp.rmax1);
        ansr=update1(tmpp,ansr);
        ansl=update1(ansl,ansr);
    }    
    printf("%d\n",ansl.ans);
//    printf("sdfsdf\n");
    //print(root);
}
int main(){
    freopen("hdu4718.in","r",stdin);
    //freopen("hdu4718.out","w",stdout);
    int T,tot=0;
    T=read();
    while (T--){
        printf("Case #%d:\n",++tot);
        n=read();memset(h,0,sizeof(h));memset(son,0,sizeof(son));
        for (int i=1;i<=n;++i) a[i]=read();num=0;
        for (int i=2;i<=n;++i){
            int x=read();
            data[++num].y=x;data[num].next=h[i];h[i]=num;
            data[++num].y=i;data[num].next=h[x];h[x]=num;
        }dep[1]=1;cnt=0;
        dfs1(1);dfs2(1,1);
        //for (int i=1;i<=n;++i) printf("%d ",id[i]);printf("\n");
        cnt=0;
        build(root,1,n);//print(root);
        m=read();
        for (int i=1;i<=m;++i){
            int x=read(),y=read();
            solve(x,y);
        }    
        if(T)printf("\n");
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值