http://www.elijahqi.win/archives/901
这道题我们先求树的直径 然后再找到直径上距离最大是多少
求法:先从任一点用DFS求得离这点最远的点,那么这一点一定可作为树的某条直径的端点,然后再DFS一遍求得离此点最远的距离即可。
相关说明:首先我们先说明我们求得的一定是某条直径的端点。
1)假设我们所选点是某条直径路线上的点,显然,由于是直径,所以这一点和两个端点的较大距离一定是离所有点距离中的最大者,否则,就不是在直径上了;
2)那如果我们选的点不是在直径上的,然而假设在走到距离最长的点时走到了某条直径上,那么它必定最后走到的是直径的端点,这和1)类似(注意我们现在只是先假设了这种情况的出现,而且树上从一点到另一点的路径是唯一的)。
那下面在证明必然会与某个直径相交:假设出发点为u,找到的最远点是T,树的某个直径为s-t,他们没有相交,且是通过x1到x2的某条路径连接,不妨假设dis(s-x1)<=dis(t-x1),如下图,那么现在有dis(u-T)>=dis(u-x2)+dis(x2-x1)+dis(x1-t),即:dis(u-x2)+dis(x2-T)>=dis(u-x2)+dis(x2-x1)+dis(x1-t),也就是:
dis(x2-T)>=dis(x2-x1)+dis(x1-t),那么
dis(x2-T)+dis(x2-x1)+dis(x1-s)>=2*dis(x2-x1)+dis(x1-t)+dis(x1-s),
即:dis(s-T)>=2*dis(x2-x1)+dis(s-t),故:dis(s-T)>dis(s-t),这与s-t为直径矛盾。故一定相交。
#include<cstdio>
#include<cstring>
#define N 110000
inline int read(){
int x=0,f=1;char ch=getchar();
while (ch<'0'||ch>'9'){if (ch=='-') f=-1;ch=getchar();}
while (ch<='9'&&ch>='0'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
struct node{
int y,next;
}data[N<<1];
int h[N],fa[N],dep[N],pos,max1,num,n;
bool visit[N];
inline int max(int x,int y){
return x>y?x:y;
}
void dfs1(int x){
for (int i=h[x];i;i=data[i].next){
int y=data[i].y;
if (fa[x]==y) continue;dep[y]=dep[x]+1;fa[y]=x;
if (dep[y]>max1) max1=dep[y],pos=y;dfs1(y);
}
}
bool dfs2(int x){
if (x==pos) {visit[x]=true;dep[x]=0;return visit[x];}
bool flag=false;
for (int i=h[x];i;i=data[i].next){
int y=data[i].y;
if (fa[x]==y) continue;fa[y]=x;
if (dfs2(y)==true) flag=true;
}
if (flag) dep[x]=0,visit[x]=true;
return flag;
}
void dfs3(int x){
for (int i=h[x];i;i=data[i].next){
int y=data[i].y;
if (fa[x]==y) continue;fa[y]=x;
if (visit[y]) dep[y]=0;else dep[y]=dep[x]+1;
max1=max(max1,dep[y]); dfs3(y);
}
}
int main(){
freopen("tree.in","r",stdin);
n=read();
for (int i=1;i<n;++i){
int x=read(),y=read();
data[++num].y=y;data[num].next=h[x];h[x]=num;
data[++num].y=x;data[num].next=h[y];h[y]=num;
}dep[1]=1;max1=-1;
dfs1(1);memset(dep,0,sizeof(dep));memset(fa,0,sizeof(fa));int pp=pos;
dfs1(pp); //pp->pos;
//printf("%d\n",pos);
bool tm=dfs2(pp);
memset(fa,0,sizeof(fa));max1=-1;
dfs3(pos);
printf("%d",max1);
}