http://www.elijahqi.win/archives/3198
Description
有n位同学,每位同学都参加了全部的m门课程的期末考试,都在焦急的等待成绩的公布。第i位同学希望在第ti天
或之前得知所.有.课程的成绩。如果在第ti天,有至少一门课程的成绩没有公布,他就会等待最后公布成绩的课程
公布成绩,每等待一天就会产生C不愉快度。对于第i门课程,按照原本的计划,会在第bi天公布成绩。有如下两种
操作可以调整公布成绩的时间:1.将负责课程X的部分老师调整到课程Y,调整之后公布课程X成绩的时间推迟一天
,公布课程Y成绩的时间提前一天;每次操作产生A不愉快度。2.增加一部分老师负责学科Z,这将导致学科Z的出成
绩时间提前一天;每次操作产生B不愉快度。上面两种操作中的参数X,Y,Z均可任意指定,每种操作均可以执行多次
,每次执行时都可以重新指定参数。现在希望你通过合理的操作,使得最后总的不愉快度之和最小,输出最小的不
愉快度之和即可
Input
第一行三个非负整数A,B,C,描述三种不愉快度,详见【问题描述】;
第二行两个正整数n,m(1≤n,m≤105),分别表示学生的数量和课程的数量;
第三行n个正整数ti,表示每个学生希望的公布成绩的时间;
第四行m个正整数bi,表示按照原本的计划,每门课程公布成绩的时间。
1<=N,M,Ti,Bi<=100000,0<=A,B,C<=100000
Output
输出一行一个整数,表示最小的不愉快度之和。
Sample Input
100 100 2
4 5
5 1 2 3
1 1 2 3 3
Sample Output
6
由于调整操作产生的不愉快度太大,所以在本例中最好的方案是不进行调整; 全部
5 的门课程中,最慢的在第 3 天出成绩;
同学 1 希望在第 5 天或之前出成绩,所以不会产生不愉快度;
同学 2 希望在第 1 天或之前出成绩,产生的不愉快度为 (3 - 1) * 2 = 4;
同学 3 希望在第 2 天或之前出成绩,产生的不愉快度为 (3 - 2) * 2 = 2;
同学 4 希望在第 3 天或之前出成绩,所以不会产生不愉快度;
不愉快度之和为 4 + 2 = 6 。
HINT
存在几组数据,使得C = 10 ^ 16
Source
黑吉辽沪冀晋六省联考
elijahqi太菜了啦qwq
考虑到答案只和人产生的不愉快度还有交换调整老师的情况有关系 所以将两个函数尝试感受一下发现是单峰函数 然后就可以三分他了 每次划分的是最晚出成绩的天数 然后根据A与B的关系讨论 考虑将超过天数的全部改到我枚举的那个天数即可
#include<cstdio>
#include<cctype>
#include<algorithm>
#define ll long long
using namespace std;
inline char gc(){
static char now[1<<16],*S,*T;
if (T==S){T=(S=now)+fread(now,1,1<<16,stdin);if(T==S) return EOF;}
return *S++;
}
inline ll read(){
ll x=0,f=1;char ch=gc();
while(!isdigit(ch)) {if(ch=='-') f=-1;ch=gc();}
while(isdigit(ch)) x=x*10+ch-'0',ch=gc();
return x*f;
}
const int N=1e5+10;
ll C,t[N];int A,B,n,m,b[N];
inline ll judge(ll x){
static ll tmp,rt,nd;tmp=rt=nd=0;
if (A<B){
for (int i=1;i<=m;++i) if (x<b[i]) nd+=b[i]-x;else rt+=x-b[i];
if(rt>=nd) tmp+=A*nd;else tmp+=A*rt+(nd-rt)*B;
}else for (int i=1;i<=m;++i) tmp+=B*(b[i]>x)*(b[i]-x);
for (int i=1;i<=n;++i) if (t[i]<x) tmp+=C*(x-t[i]);return tmp;
}
int main(){
freopen("bzoj4868.in","r",stdin);
A=read();B=read();C=read();
n=read();m=read();
for (int i=1;i<=n;++i) t[i]=read();
for (int i=1;i<=m;++i) b[i]=read();
if (C==1e16) {
ll mn=1LL<<60;
for (int i=1;i<=n;++i) mn=min(mn,t[i]);
printf("%lld\n",judge(mn));return 0;
}int l=1,r=1e5;
while(l+2<r){
static int mid1,mid2;static ll v1,v2;
mid1=(2*l+r)/3;mid2=(l+2*r)/3;
v1=judge(mid1);v2=judge(mid2);
if (v1==v2) {l=mid1,r=mid2;continue;}
if(v1>v2) l=mid1;else r=mid2;
}
ll v1=judge(l),v2=judge(r),v3=judge((2*l+r)/3),v4=judge((l+2*r)/3);
printf("%lld\n",min(min(v1,v2),min(v3,v4)));
return 0;
}