bzoj 4923 [Lydsy1706月赛]K小值查询

http://www.elijahqi.win/archives/3702
Description
维护一个长度为n的正整数序列a_1,a_2,…,a_n,支持以下两种操作:
1 k,将序列a从小到大排序,输出a_k的值。
2 k,将所有严格大于k的数a_i减去k。
Input
第一行包含两个正整数n,m(1<=n,m<=100000),分别表示序列的长度和操作的个数。
第二行包含n个正整数a_1,a_2,…,a_n(1<=a_i<=10^9),分别表示序列中的每个元素。
接下来m行,每行两个正整数op(1<=op<=2),k,若op=1,则1<=k<=n;若op=2,则1<=k<=10^9;依次描述每个操作。
Output
输出若干行,对于每个询问输出一行一个整数,即第k小的值。
Sample Input
4 5
1 5 6 12
2 5
1 1
1 2
1 3
1 4
Sample Output
1
1
5
7
HINT

Source
本OJ付费获取

分类讨论 1~k不变 k+1~2k暴力修改 2k+1以上打splay上标记

可以证明发现每次减半 这样复杂度是log^2的 全部操作仅由splay即可完成

#include<cstdio>
#include<cctype>
#include<algorithm>
using namespace std;
inline char gc(){
    static char now[1<<16],*S,*T;
    if (T==S){T=(S=now)+fread(now,1,1<<16,stdin);if (T==S) return EOF;}
    return *S++;
}
inline int read(){
    int x=0,f=1;char ch=gc();
    while(!isdigit(ch)) {if (ch=='-') f=-1;ch=gc();}
    while(isdigit(ch)) x=x*10+ch-'0',ch=gc();
    return x*f;
}
const int N=1e5+10;
const int inf=0x3f3f3f3f;
int tag[N],v[N],n,m,c[N][2],fa[N],size[N],pre,succ,q[N],top,rt;
inline void update(int x){
    size[x]=size[c[x][0]]+size[c[x][1]]+1;
}
inline void build(int &x,int l,int r,int f){
    int mid=l+r>>1;x=mid;fa[mid]=f;size[mid]=1;
    if(l<mid) build(c[mid][0],l,mid-1,mid);
    if (r>mid) build(c[mid][1],mid+1,r,mid);update(x);
}
inline void pushdown(int x){
    if (!tag[x]) return;
    int l=c[x][0],r=c[x][1];
    if (l) tag[l]+=tag[x],v[l]+=tag[x];
    if (r) tag[r]+=tag[x],v[r]+=tag[x];tag[x]=0;
}
inline void rotate(int x,int &tar){
    int y=fa[x],z=fa[y],l=c[y][1]==x,r=l^1;
    if(y==tar) tar=x;else c[z][c[z][1]==y]=x;
    fa[c[x][r]]=y;fa[y]=x;fa[x]=z;
    c[y][l]=c[x][r];c[x][r]=y;update(y);update(x);
}
inline void splay(int x,int &tar){
    q[top=1]=x;for (int i=x;fa[i];i=fa[i]) q[++top]=fa[i];
    while(top) pushdown(q[top--]);
    while(x!=tar){
        int y=fa[x],z=fa[y];
        if(y!=tar){
            if (c[y][0]==x^c[z][0]==y) rotate(x,tar);else rotate(y,tar);
        }rotate(x,tar);
    }
}
inline int findk(int x,int k){
    if (size[c[x][0]]+1==k) {splay(x,rt);return v[x];}
    pushdown(x);
    if (k<=size[c[x][0]]) return findk(c[x][0],k);
    else return findk(c[x][1],k-size[c[x][0]]-1);
}
inline void pre1(int x,int vv){
    if (!x) return;pushdown(x);
    if (v[x]<vv) pre=x,pre1(c[x][1],vv);
    else pre1(c[x][0],vv);
}
inline void succ1(int x,int vv){
    if (!x) return;pushdown(x);
    if (v[x]>vv) succ=x,succ1(c[x][0],vv);
    else succ1(c[x][1],vv);
}
inline void insert1(int &x,int id,int f){
    if (!x) {x=id;fa[x]=f;size[x]=1;c[x][0]=c[x][1]=0;splay(x,rt);return;}
    pushdown(x);
    if (v[id]<v[x]) insert1(c[x][0],id,x);
    else insert1(c[x][1],id,x);
}
inline void dfs(int x,int k){
    if (!x) return;
    pushdown(x);v[x]-=k;
    dfs(c[x][0],k);dfs(c[x][1],k);
}
inline void dfs1(int x,int k){
    if (!x) return;
    pushdown(x);v[x]-=k;
    dfs1(c[x][0],k);dfs1(c[x][1],k);
    insert1(rt,x,0);
}
inline void print(int x){
    if (!x) return;
    print(c[x][0]);printf("%d %d\n",v[x],size[x]);print(c[x][1]);
}
int main(){
    freopen("bzoj4923.in","r",stdin);
    n=read();m=read();
    for (int i=1;i<=n;++i) v[i]=read();
    sort(v+1,v+n+1);build(rt,1,n,0);//print(rt);puts("");
    for (int i=1;i<=m;++i){
        int op=read(),k=read();
        if (op==1) printf("%d\n",findk(rt,k));//print(rt),puts("");
        if (op==2){
            pre=0;succ=inf;int now=rt;
        //  while(c[now][1]) now=c[now][1];
            //if (v[now]<k) continue;
            pre1(rt,k+1);succ1(rt,2*k);
            if(!pre&&succ==inf) {
                dfs(rt,k);continue;
            }
            if (!pre){
                splay(succ,rt);
                dfs(c[rt][0],k);
                v[rt]-=k;int r=c[rt][1];
                if (r) v[r]-=k,tag[r]-=k;continue;
            }
            if (succ==inf){
                splay(pre,rt);int tmp=c[rt][1];
                c[rt][1]=fa[c[rt][1]]=0;update(rt);
                dfs1(tmp,k);continue;
            }
            pre1(rt,2*k+1);splay(pre,rt);int r=c[pre][1];
            if (r) tag[r]-=k,v[r]-=k;
            pre1(rt,k+1);splay(succ,rt);splay(pre,c[rt][0]);
            int xx=c[pre][1];c[pre][1]=fa[c[pre][1]]=0;update(pre);dfs1(xx,k);

        }
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值