http://www.elijahqi.win/archives/3702
Description
维护一个长度为n的正整数序列a_1,a_2,…,a_n,支持以下两种操作:
1 k,将序列a从小到大排序,输出a_k的值。
2 k,将所有严格大于k的数a_i减去k。
Input
第一行包含两个正整数n,m(1<=n,m<=100000),分别表示序列的长度和操作的个数。
第二行包含n个正整数a_1,a_2,…,a_n(1<=a_i<=10^9),分别表示序列中的每个元素。
接下来m行,每行两个正整数op(1<=op<=2),k,若op=1,则1<=k<=n;若op=2,则1<=k<=10^9;依次描述每个操作。
Output
输出若干行,对于每个询问输出一行一个整数,即第k小的值。
Sample Input
4 5
1 5 6 12
2 5
1 1
1 2
1 3
1 4
Sample Output
1
1
5
7
HINT
Source
本OJ付费获取
分类讨论 1~k不变 k+1~2k暴力修改 2k+1以上打splay上标记
可以证明发现每次减半 这样复杂度是log^2的 全部操作仅由splay即可完成
#include<cstdio>
#include<cctype>
#include<algorithm>
using namespace std;
inline char gc(){
static char now[1<<16],*S,*T;
if (T==S){T=(S=now)+fread(now,1,1<<16,stdin);if (T==S) return EOF;}
return *S++;
}
inline int read(){
int x=0,f=1;char ch=gc();
while(!isdigit(ch)) {if (ch=='-') f=-1;ch=gc();}
while(isdigit(ch)) x=x*10+ch-'0',ch=gc();
return x*f;
}
const int N=1e5+10;
const int inf=0x3f3f3f3f;
int tag[N],v[N],n,m,c[N][2],fa[N],size[N],pre,succ,q[N],top,rt;
inline void update(int x){
size[x]=size[c[x][0]]+size[c[x][1]]+1;
}
inline void build(int &x,int l,int r,int f){
int mid=l+r>>1;x=mid;fa[mid]=f;size[mid]=1;
if(l<mid) build(c[mid][0],l,mid-1,mid);
if (r>mid) build(c[mid][1],mid+1,r,mid);update(x);
}
inline void pushdown(int x){
if (!tag[x]) return;
int l=c[x][0],r=c[x][1];
if (l) tag[l]+=tag[x],v[l]+=tag[x];
if (r) tag[r]+=tag[x],v[r]+=tag[x];tag[x]=0;
}
inline void rotate(int x,int &tar){
int y=fa[x],z=fa[y],l=c[y][1]==x,r=l^1;
if(y==tar) tar=x;else c[z][c[z][1]==y]=x;
fa[c[x][r]]=y;fa[y]=x;fa[x]=z;
c[y][l]=c[x][r];c[x][r]=y;update(y);update(x);
}
inline void splay(int x,int &tar){
q[top=1]=x;for (int i=x;fa[i];i=fa[i]) q[++top]=fa[i];
while(top) pushdown(q[top--]);
while(x!=tar){
int y=fa[x],z=fa[y];
if(y!=tar){
if (c[y][0]==x^c[z][0]==y) rotate(x,tar);else rotate(y,tar);
}rotate(x,tar);
}
}
inline int findk(int x,int k){
if (size[c[x][0]]+1==k) {splay(x,rt);return v[x];}
pushdown(x);
if (k<=size[c[x][0]]) return findk(c[x][0],k);
else return findk(c[x][1],k-size[c[x][0]]-1);
}
inline void pre1(int x,int vv){
if (!x) return;pushdown(x);
if (v[x]<vv) pre=x,pre1(c[x][1],vv);
else pre1(c[x][0],vv);
}
inline void succ1(int x,int vv){
if (!x) return;pushdown(x);
if (v[x]>vv) succ=x,succ1(c[x][0],vv);
else succ1(c[x][1],vv);
}
inline void insert1(int &x,int id,int f){
if (!x) {x=id;fa[x]=f;size[x]=1;c[x][0]=c[x][1]=0;splay(x,rt);return;}
pushdown(x);
if (v[id]<v[x]) insert1(c[x][0],id,x);
else insert1(c[x][1],id,x);
}
inline void dfs(int x,int k){
if (!x) return;
pushdown(x);v[x]-=k;
dfs(c[x][0],k);dfs(c[x][1],k);
}
inline void dfs1(int x,int k){
if (!x) return;
pushdown(x);v[x]-=k;
dfs1(c[x][0],k);dfs1(c[x][1],k);
insert1(rt,x,0);
}
inline void print(int x){
if (!x) return;
print(c[x][0]);printf("%d %d\n",v[x],size[x]);print(c[x][1]);
}
int main(){
freopen("bzoj4923.in","r",stdin);
n=read();m=read();
for (int i=1;i<=n;++i) v[i]=read();
sort(v+1,v+n+1);build(rt,1,n,0);//print(rt);puts("");
for (int i=1;i<=m;++i){
int op=read(),k=read();
if (op==1) printf("%d\n",findk(rt,k));//print(rt),puts("");
if (op==2){
pre=0;succ=inf;int now=rt;
// while(c[now][1]) now=c[now][1];
//if (v[now]<k) continue;
pre1(rt,k+1);succ1(rt,2*k);
if(!pre&&succ==inf) {
dfs(rt,k);continue;
}
if (!pre){
splay(succ,rt);
dfs(c[rt][0],k);
v[rt]-=k;int r=c[rt][1];
if (r) v[r]-=k,tag[r]-=k;continue;
}
if (succ==inf){
splay(pre,rt);int tmp=c[rt][1];
c[rt][1]=fa[c[rt][1]]=0;update(rt);
dfs1(tmp,k);continue;
}
pre1(rt,2*k+1);splay(pre,rt);int r=c[pre][1];
if (r) tag[r]-=k,v[r]-=k;
pre1(rt,k+1);splay(succ,rt);splay(pre,c[rt][0]);
int xx=c[pre][1];c[pre][1]=fa[c[pre][1]]=0;update(pre);dfs1(xx,k);
}
}
return 0;
}