Description
JSOI的国境线上有N一座连续的山峰,其中第ii座的高度是hi??.为了简单起见,我们认为这N座山峰排成了连续一条
直线.如果在第ii座山峰上建立一座高度为p(p≥0)的灯塔,JYY发现,这座灯塔能够照亮第jj座山峰,当且仅当满足如
下不等式:hj≤hi+p-sqrt(|i-j|)JSOI国王希望对于每一座山峰,JYY都能提供建造一座能够照亮全部其他山峰的灯
塔所需要的最小高度.你能帮助JYY么?
1< N ≤ 10^5
0 < hi ≤ 10^9
Input
输入一行包含一个正整数N。
接下来N行,第i行包含一个正整数ℎi,表示第i座山峰的高度。
Output
第i行包含一个非负整数,表示在第i座山峰上修建灯塔所需要的最小高度Pi
Sample Input
6
5
3
2
4
2
4
Sample Output
2
3
5
3
5
4
HINT
Source
https://blog.csdn.net/elijahqi/article/details/80899228
#include<bits/stdc++.h>
using namespace std;
inline char gc(){
static char now[1<<16],*S,*T;
if (T==S){T=(S=now)+fread(now,1,1<<16,stdin);if (T==S) return EOF;}
return *S++;
}
inline int read(){
int x=0,f=1;char ch=gc();
while(!isdigit(ch)) {if(ch=='-') f=-1;ch=gc();}
while(isdigit(ch)) x=x*10+ch-'0',ch=gc();
return x*f;
}
const int N=500050;
struct node{
int p,l,r;
}data[N],q[N];
double dp1[N],dp2[N];int n,a[N];
inline double calc(int j,int i){
return a[j]+sqrt(abs(i-j))-a[i];
}
inline int find(const node &a,int x){
int l=a.l,r=a.r,p=a.p;
while(l<=r){
int mid=l+r>>1;
if(calc(p,mid)>calc(x,mid)) l=mid+1;else r=mid-1;
}return l;
}
inline void gao(double *dp){
int h=1,t=0;
for (int i=1;i<=n;++i){
++q[h].l;if(h<=t&&q[h].l>q[h].r) ++h;
if(h>t||calc(q[t].p,n)<calc(i,n)){
while(h<=t&&calc(q[t].p,q[t].l)<calc(i,q[t].l)) --t;
if (h>t) q[++t]=(node){i,i,n};else{
int md=find(q[t],i);
q[t].r=md-1;q[++t]=(node){i,md,n};
}
}dp[i]=calc(q[h].p,i);
}
}
int main(){
// freopen("bzoj2216.in","r",stdin);
n=read();
for (int i=1;i<=n;++i) a[i]=read();gao(dp1);
for (int i=1,j=n;i<j;++i,--j) swap(a[i],a[j]);gao(dp2);
for (int i=1;i<=n;++i) printf("%d\n",max(0,(int)ceil(max(dp1[i],dp2[n-i+1]))));
return 0;
}