复变函数可微条件深入理解

本文讨论了复变函数与实变函数的区别,特别是复变函数中如|z|^2在复平面上的可微性。通过比较R2→R2与C→C的线性映射,揭示了Cauchy-Riemann方程的必要性。文章还通过几何直观解释了复变函数的特殊性质,并提到了解析函数的重要地位。
摘要由CSDN通过智能技术生成

广阔而险恶的复变函数——可微条件探索

辛铅笔

辛铅笔

我还是个孩子

3 人赞同了该文章

复变函数的广阔性自不必多说,代数基本定理,乃至初等函数的统一性,都体现了复变函数相比于实变函数更和谐的面貌。

而相比于实变函数,复变函数中又出现了更多不可微的函数,一个经典的例子是f(z)=|z|2。

问题的提出

我们知道复平面是一种很好的可视化方法,此时的复变函数视为两个复平面的变换。但问题在于,这样的变换C→C 与R2→R2 两者都是平面间的变换,但函数f(z)=|z|2,对于前者只有原点处可微,而对于后者处处而可微,是什么导致了这样的区别呢?

更一般地说,为什么C→C 的可微条件相比于R2→R2 的可微条件,需要多加一个Cauchy-Riemann方程?

细探可微

为了方便讨论,我们先考虑一般函数的可微性定义

定义1 可微

设数域F,定义函数f:Fm⊃E→Fn,f 称为在极限点x∈E可微的,当且仅当存在线性映射L(x;h):Fm→Fn 使得

f(x+h)−f(x)=L(x;h)+α(x;h)

当h→0 时,α(x;h)=o(h)。

定义2 线性映射

设相同域K 上的线性空间X,U,称映射T:X→U 为线性映射,当且仅当:
(1) 可加:任意x,y∈X,T(x+y)=T(x)+T(y);
(2) 齐次:任意x∈X,k∈K,T(kx)=kT(x)。

定义3 线性空间

域K 上的线性空间(X;K)是定义了下列两种运算的数学对象
(1) 加法,记作x+y∈(X;K) 。满足交换律x+y=y+z,结合律x+(y+z)=(x+y)+z,有零元素0 使得x+0=x,有逆运算− 使得x+(−x)≡x−x=0;
(2) 乘法,记作kx∈(X;K),k∈K。满足结合律k(ax)=(ka)x, a,k∈K,分配律k(x+y)=kx+ky与(a+b)x=ax+bx,有单位元1 使得1x=x。

容易验证,上面三个定义对于大家熟悉的一元单值实函数、多元单值实函数、一元单值复函数的可微性定义,都是兼容的,或者说不矛盾的。所以,目前各种函数的可微性都可以解释为存在线性逼近L,对于任意方向(R 中有两个方向,R2,C 有有无穷多个方向)的小变化量,误差趋于0。

于是问题就更加凸显了,甚至C→C 与R2→R2 的可微定义都是统一的,为什么最后其充要条件会如此不同呢?(C-R方程)

线性映射

我们认为,关键在于连着的线性映射不同。

由定义2,我们可以分别写出R2→R2 与C→C 的线性映射,其形式均为2阶方阵:

(1)LR(z;h)=(a b c d),z∈R2, LR∈(R2;R).

(2)LC(z;h)=(x −y y x),z=x+i y∈C, Lc∈(C;C).

可见,其中LR 只需满秩即可(维持线性空间的维数),而LC 除了满秩外,还需要更具体的结构(稍加验证就可以发现,这其实是复数的矩阵表示)。

回顾矩阵乘法(线性变换)的几何意义,根据矩阵的分解理论(此处使用SVD分解),一般的二阶方阵LR 可以等价于正交变换(平移、旋转、对称)、伸缩的组合;而LC 显然可以分解为单位矩阵的常数倍加一个旋转矩阵,即LC=rI+M(θ),其作用效果等价于等比例伸缩、旋转(绕原点)两种几何变换的组合(这与z=reiθ表示的复数乘法的几何意义是一致的)。

正是这缺少的一些几何变换为R2→R2 与C→C 带来了不同的微分性质。直观地说,R2 中的线性映射比C 中的更“强”。此处还可以得到一个副产品推论:在C 中可微的函数在R2 中也可微。

Jacobbi 矩阵

回到定义1,我们来求LR,LC 的具体表示

设z=(x y)T, h=(Δx Δy)T,fx表示f 在x 轴上的分量

f(z+h)−f(z)=L⋅h+α⋅h,

等价于

(fx(z)fy(z))−(fx(z+h)fy(z+h))=(abcd)(ΔxΔy)+α⋅(ΔxΔy),

等价于线性方程组

fx(z)−fx(z+h)=aΔx+bΔy+αxΔx,fy(z)−fy(z+h)=cΔx+dΔy+αyΔy,

由于fx,fy 均为二元单值实函数,由其偏导数的定义得

a=∂fx∂x,b=∂fx∂y,c=∂fy∂x,d=∂fy∂y.

满足上式。故有

L=(∂fx∂x∂fx∂y∂fy∂x∂fy∂y),

即Jacobbi矩阵。若使L 满足式(2) 的结构,则有

∂fx∂x=∂fy∂y,∂fx∂y=−∂fy∂x.

即Cauchy-Riemann 方程。

以上我们从一般的可微定义入手,指出R2→R2 与C→C 的本质差异在于其上的线性映射的差异,然后由此差异自然地推出R2→R2 可微的充要条件与C-R方程。

几何图景

下面我们将用可视化的方法,使用上面的结论完成对f(z)=|z|2 的可微性的解释。

图1

图2

其实,R2→R2 与C→C 均将图1中的向量u,v 映为图2中的u1,v1,但由于二者的线性映射允许的几何变换不同,R2 中的线性映射通过旋转、平移和伸缩,可以很轻松的近似原映射,而C 中的线性映射仅通过旋转和伸缩无法使v 与v1 很好地贴合,于是f(z)=|z|2 在点z=(2,2)表现为在前者可微,而在后者中不可微。(严谨地,应该考虑圆周任意小时的情形,但现在的圆周已有足够的代表性)

图3

图4

但对于图3、图4的情况,旋转与伸缩是够用的,于是f(z)=|z|2 在点,z=(0,0)表现为在两个空间中均可微。

通过这样简单的几何直观,我们不十分严谨地验证了“f(z)=|z|2 在R2 中处处可微,而在C 中仅原点可微” 这一命题。

收缩

就像在微积分中做的那样,以上关于复变函数可微性的“险恶”事实,迫使我们把目光主要局限于“好函数”,这里指解析函数(处处可微/可展为幂级数)。有趣的是,Riemann当年注意到复变函数更严格的可微条件后,干脆直接把我们现在称的解析函数定义为复变函数,或许正是由此,复分析又称为解析函数论。

值得一提的是,尽管理论上不解析的复变函数俯拾即是,但就像超越数一样,形式简单的非解析函数却很难找。多亏了z¯ 这个简洁而不解析的函数,我们才能构造像 f(z)=|z|2=zz¯ 这样简单却有力的例子。另外,共轭本身在复变函数中好像个看似无关紧要却无处不在的幽灵,Ahlfors 对于解析函数的重要性提出了另一个观点,他认为解析函数是与z 相关而与z¯ 无关的函数,因此是复空间中“真正的”函数。这个观点也很精彩,但我们还没来得及深入探究,期待感兴趣的读者与我们讨论。

参考文献

[1] Zorich, V. A. (2016). Mathematical analysis II (Vol. 220). Berlin: Springer.
[2] Needham, T. (2023). Visual complex analysis. Oxford University Press.
[3] Ahlfors, L. V. (1979) Complex Analysis. McGraw-Hall.
[4] Lax, P. D. (2007). Linear algebra and its applications (Vol. 78). John Wiley & Sons.
[5] Riemann, B. (1851). Grundlagen für eine allgemeine Theorie der Functionen einer veränderlichen complexen Grösse. Huth.
[6] 钟玉泉 (2021). 复变函数论. 高等教育出版社.

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值