过往记忆的专栏文章转载:在 Hive 中使用 OpenCSVSerde

原始链接:https://www.iteblog.com/archives/2392.html

 

在 Hive 中使用 OpenCSVSerde

 Hive  2020-05-04 18:59:41 394  0评论 下载为PDF 为什么无法评论和登录

 

文章目录

OpenCSVSerde 使用

大家使用 Hive 分析数据的时候,CSV 格式的数据应该是很常见的,所以从 0.14.0 开始(参见 HIVE-7777) Hive 跟我们提供了原生的 OpenCSVSerde 来解析 CSV 格式的数据。从名字可以看出,OpenCSVSerde 是基于 Open-CSV 2.3 类库实现的,其解析 csv 的功能还是很强大的。

为了在 Hive 中使用这个 serde,我们需要在建表的时候指定 row format serde 为 org.apache.hadoop.hive.serde2.OpenCSVSerde,具体如下:

create external table test_open_csv_serde

(

    id          int,

    version     int,

    name        varchar(16),

    create_time date,

    status      timestamp,

    amount      decimal(9,2),

    approved    boolean,

    comment     varchar(40)

)

row format serde 'org.apache.hadoop.hive.serde2.OpenCSVSerde'

with serdeproperties

(

    'separatorChar' = ',',

    'quoteChar'     = '\"',

    'escapeChar'    = '\\'

)

location '/user/iteblog/test.db';

OpenCSVSerde 默认的分隔符(separator)、quote 以及逃逸字符(escape characters )分别为 \" 以及 '。这个可以解决我们读写 CSV 的需求。

OpenCSVSerde 的问题

如果我们查看表结构的时候,我们会发现如果 row format serde 为 org.apache.hadoop.hive.serde2.OpenCSVSerde,不管你建表的时候指定字段是什么类型,其显示的都是 string 类型:

hive> show create table test_open_csv_serde;

OK

CREATE EXTERNAL TABLE `test_open_csv_serde`(

  `id` string COMMENT 'from deserializer',

  `version` string COMMENT 'from deserializer',

  `name` string COMMENT 'from deserializer',

  `create_time` string COMMENT 'from deserializer',

  `status` string COMMENT 'from deserializer',

  `amount` string COMMENT 'from deserializer',

  `approved` string COMMENT 'from deserializer',

  `comment` string COMMENT 'from deserializer')

ROW FORMAT SERDE

  'org.apache.hadoop.hive.serde2.OpenCSVSerde'

WITH SERDEPROPERTIES (

  'escapeChar'='\\',

  'quoteChar'='\"',

  'separatorChar'=',')

STORED AS INPUTFORMAT

  'org.apache.hadoop.mapred.TextInputFormat'

OUTPUTFORMAT

  'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'

LOCATION

  'file:/data/datasets'

TBLPROPERTIES (

  'COLUMN_STATS_ACCURATE'='false',

  'numFiles'='0',

  'numRows'='-1',

  'rawDataSize'='-1',

  'totalSize'='0',

  'transient_lastDdlTime'='1587115388')

Time taken: 0.051 seconds, Fetched: 28 row(s)

但是我们到 Hive 的元数据表里面发现字段类型是按照我们建表的时候存储的:

mysql> select * from COLUMNS_V2 where CD_ID = 16 order by INTEGER_IDX;

+-------+---------+-------------+--------------+-------------+

| CD_ID | COMMENT | COLUMN_NAME | TYPE_NAME    | INTEGER_IDX |

+-------+---------+-------------+--------------+-------------+

|    16 | NULL    | id          | int          |           0 |

|    16 | NULL    | version     | int          |           1 |

|    16 | NULL    | name        | varchar(16)  |           2 |

|    16 | NULL    | create_time | date         |           3 |

|    16 | NULL    | status      | timestamp    |           4 |

|    16 | NULL    | amount      | decimal(9,2) |           5 |

|    16 | NULL    | approved    | boolean      |           6 |

|    16 | NULL    | comment     | varchar(40)  |           7 |

+-------+---------+-------------+--------------+-------------+

8 rows in set (0.00 sec)

也就是说,这个行为是 OpenCSVSerde 导致的,早在2016年05月 Hive 社区就有人反馈了支持其他类型的列 HIVE-13709,不过到现在还没解决。另外,除了上面说的 show create table 的时候显示字段为 string 类型,我们在使用 OpenCSVSerde 读写数据的时候也是按照 string 处理的。

其实,按我的理解,软件不应该什么设计,如果只支持 string 类型,那你为什么不在建表的时候就不让大家指定除 string 类型之外的类型。现在这种行为确实不太好,修改了用户默认的行为。

为什么使用 OpenCSVSerde 时,show 的时候字段全变成 string 类型

下面我们来看看是哪里导致使用 OpenCSVSerde 时,show 的时候字段全变成 string 类型。
org.apache.hadoop.hive.ql.exec.DDLTask#showCreateTable 里面会调用 org.apache.hadoop.hive.ql.metadata.Table#getCols 方法,这里的 getDeserializer() 调用会根据我们建表时候指定的 row format serde 来创建对应的 Deserializer,因为 test_open_csv_serde 表的 serde 是 OpenCSVSerde,所以在初始化 Deserializer 的时候会调用 org.apache.hadoop.hive.serde2.OpenCSVSerde#initialize 方法,这里面会把表的所有列类型设置为 PrimitiveObjectInspectorFactory.javaStringObjectInspector,这个就直接导致后面我们 show create table 的时候显示所有字段为 string。紧接着用 columnOIs 去初始化 inspector 对象。

@Override

public void initialize(final Configuration conf, final Properties tbl) throws SerDeException {

 

    final List<String> columnNames = Arrays.asList(tbl.getProperty(serdeConstants.LIST_COLUMNS)

        .split(","));

 

    numCols = columnNames.size();

 

    final List<ObjectInspector> columnOIs = new ArrayList<ObjectInspector>(numCols);

 

    for (int i = 0; i < numCols; i++) {

      columnOIs.add(PrimitiveObjectInspectorFactory.javaStringObjectInspector);

    }

 

    inspector = ObjectInspectorFactory.getStandardStructObjectInspector(columnNames, columnOIs);

    outputFields = new String[numCols];

    row = new ArrayList<String>(numCols);

 

    for (int i = 0; i < numCols; i++) {

      row.add(null);

    }

 

    separatorChar = getProperty(tbl, SEPARATORCHAR, CSVWriter.DEFAULT_SEPARATOR);

    quoteChar = getProperty(tbl, QUOTECHAR, CSVWriter.DEFAULT_QUOTE_CHARACTER);

    escapeChar = getProperty(tbl, ESCAPECHAR, CSVWriter.DEFAULT_ESCAPE_CHARACTER);

}

初始化完 OpenCSVSerde 之后,getCols 方法会调用 org.apache.hadoop.hive.metastore.MetaStoreUtils#getFieldsFromDeserializer 方法,这个方法第一行就是 ObjectInspector oi = deserializer.getObjectInspector();,也就是获取我们上面介绍的 OpenCSVSerde 的 inspector:后面用这个解析字段类型的时候就直接拿到所有字段为 string。

有什么好办法?

那我们不想这么处理咋办?一个好办法肯定是自己实现一个 CSVSerde,然后展现出数据的真实数据类型,但这个估计比较麻烦。其实我们可以参考下 aws 的产品处理原则

这个是可以使得数据类型是真实的。

  • 如果数据包含使用双引号 (") 括起的值,则可以使用 OpenCSV SerDe 将这些值反序列化。
  • 如果数据不包含使用双引号 (") 括起的值,则无需指定任何 SerDe,也就是使用默认的 org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe,然后指定数据的分隔符:

    CREATE EXTERNAL TABLE iteblog_csv_test (

        id string,

        name string,

        age int

    )

        PARTITIONED BY (year STRING)

        ROW FORMAT DELIMITED

          FIELDS TERMINATED BY ','

          ESCAPED BY '\\'

          LINES TERMINATED BY '\n'

        LOCATION 'hdfs://user/iteblog/testdb';

本博客文章除特别声明,全部都是原创!
转载本文请加上:转载自过往记忆(https://www.iteblog.com/)
本文链接: 【在 Hive 中使用 OpenCSVSerde】(https://www.iteblog.com/archives/2392.html)

 

 

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值