Given a binary tree, determine if it is a valid binary search tree (BST).
Assume a BST is defined as follows:
- The left subtree of a node contains only nodes with keys less than the node's key.
- The right subtree of a node contains only nodes with keys greater than the node's key.
- Both the left and right subtrees must also be binary search trees.
算法一,递归+取值范围
在leetcode上实际执行时间为32ms。
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
bool isValidBST(TreeNode* root) {
return isValidBST(root, LLONG_MIN, LLONG_MAX);
}
bool isValidBST(TreeNode *root, int64_t start, int64_t stop) {
return !root ||
root &&
root->val > start && root->val < stop &&
isValidBST(root->left, start, root->val) &&
isValidBST(root->right, root->val, stop);
}
};
算法二,中序遍历+全局prev指针
在中序遍历时,检查当前结点的值是否大于前一节点的值。
在leetcode上实际执行时间为18ms。
实际执行时间要好于前一个算法。也许是因为少一个参数入栈所致。
class Solution {
public:
bool isValidBST(TreeNode* root) {
TreeNode *prev = 0;
return isValidBST(root, prev);
}
bool isValidBST(TreeNode *root, TreeNode *&prev) {
if (!root) return true;
if (!isValidBST(root->left, prev)) return false;
if (prev && prev->val >= root->val) return false;
prev = root;
return isValidBST(root->right, prev);
}
};