判断一个自然数是否是某个数的平方。当然不能使用开方运算。
假设待判断的数字是 N。
方法1:
遍历从1到N的数字,求取平方并和N进行比较。如果平方小于N,则继续遍历;如果等于N,则成功退出;如果大于N,则失败退出。
复杂度为O(n^0.5)。
方法2:
使用二分查找法,对1到N之间的数字进行判断。
复杂度为O(log n)。
bool square(int n)
{
int l = 0, h = n;
while (l <= h)
{
const int m = (l+h)/2;
const int s = m * m;
if (s == n)
return true;
else if (s < n)
l = m + 1;
else
h = m - 1;
}
return false;
}
方法3:
由于
(n+1)^2
=n^2 + 2n + 1,
= ...
= 1 + (2*1 + 1) + (2*2 + 1) + ... + (2*n + 1)
注意到这些项构成了等差数列(每项之间相差2)。
所以我们可以比较 N-1, N - 1 - 3, N - 1 - 3 - 5 ... 和0的关系。
即,将一个数连续减去,1,3,5,7,9,11,13,...
复杂度为O(n^0.5)。不过方法3中利用加减法替换掉了方法1中的乘法,所以速度会更快些。
bool square(int n)
{
int i = 1;
n = n - i;
while(n > 0)
{
i += 2;
n -= i;
}
if( n == 0 )
return true;
else
return false;
}
参考:
http://blog.csdn.net/he_haiqiang/article/details/7914983
将一个数连续减去,1,3,5,7,9,11,...