近日央视曝光怕被卫星拍到的垃圾山震惊全网冲上热搜,那么基于卫星是怎么发现耕地占用的呢?今天一文带你理清卫星遥感监测背后的秘密!
卫星遥感的耕地"非农化""非粮化"监测技术原理,是通过多源遥感数据融合、时序特征分析和智能分类算法,实现对耕地用途改变的精准识别。

其核心在于区分农业活动类型与建设/生态活动的光谱-时空差异,具体技术框架如下:
一、技术原理分层解析
1. 光谱特征解译层
非农化判定(耕地→建设用地/裸地):
NDVI突降+NDBI上升:植被指数(NDVI<0.3)与建筑指数(NDBI>0)的反向变化
纹理特征变化:出现规则几何边缘(建设)或均质化纹理(硬化)
热红外异常:地表温度(LST)升高2-3℃(混凝土热容效应)
非粮化判定(粮食作物→经济作物/林地/坑塘):
红边特征分析:利用Sentinel-2的B5-B7波段区分小麦(红边斜率0.8)与果树(红边斜率1.2)
表:典型作物光谱特征差异
| 地类 | NDVI峰值 | EVI2范围 | 红边位置 |
|---|---|---|---|
| 水稻 | 0.7-0.8 | 0.5-0.6 | 720nm |
| 葡萄园 | 0.6-0.7 | 0.4-0.5 | 740nm |
| 大棚 | 0.5-0.6(周期性波动) | - | - |
2. 时序特征分析层
生长周期曲线匹配:
粮食作物:单峰型(冬小麦:3-5月NDVI>0.7)
经济作物:多峰型(茶叶:全年4-5次采摘NDVI波动)
建设占用:持续低NDVI(<0.3)
SAR时序干涉:
耕地:周期性后向散射变化(播种期σ0下降3dB)
硬化地面:稳定高后向散射(σ0>-5dB)
3. 空间格局分析层
地块形态变异:
非农化:地块破碎度指数(FN)突增50%以上
非粮化:田埂结构改变(如柑橘园出现环形种植模式)

三维变化检测:
激光雷达(GEDI)检测高程变化>0.5m(如堆土)
立体影像(GF-7)提取建筑高度≥2m
二、 智能监测技术链

关键算法:
①非监督变化检测
使用IR-MAD(Iteratively Reweighted Multivariate Alteration Detection)提取变化区域
示例代码:
python
from skchange.change_detectors import IRMAD
detector = IRMAD(n_components=3)
changes = detector.fit_predict(ts_stack)
②作物分类模型
结合3D-CNN处理时空立方体数据
迁移学习(如Fine-tune CropNet)
三、 精度控制体系
验证方法:
混淆矩阵(Kappa>0.75)
外业采样(每100km²不少于20个验证点)
四、典型应用场景
①大棚房整治:
判定标准:单体面积>400㎡且连续3季NDVI<0.4
技术组合:WorldView-3(0.3m)+ Sentinel-1极化特征
大棚识别目前有具体的提取算法,可参考:大棚提取算法
调用示例
请求示例
https://api.open.geovisearth.com/v2/ai/greenhouse/extraction?bbox=%5B114.6872474990300077,26.4538289058699938,114.7306790308749953,26.4784792347549960%5D&map=no&path=https://io-qos.geovisearth.com/getfile/15/geovis-test/wanan_Q4_cut2.tif&token=您的token
返回示例
{
"code": 200,
"data": {
"taskType": "4",
"detail": {
"resultPath": "https://api3.geovisearth.com/sample-daas/user_temp_data/Zsy3woMwPEIUYIr2NIZgylUyTKwfdNzO/2024/08/22/daasResult/73d43c568ac8b396cf455a242abb420f80c969074cd22f5970a4cee1a17ce08961ac332459038687efd3757f0def0218a493c89abbd3219b74c50efd2544b6c0.geojson"
},
"status": "success",
"taskTypeCh": "greenhouseExtraction-大棚提取"
},
"message": "success"
}
②果园侵占基本农田:
识别特征:株行距模式(4m×4m棋盘格纹理)
技术方案:无人机多光谱(5cm)辅助验证
五、技术瓶颈与突破方向
当前挑战:
休耕与抛荒的误判(需结合承包数据)
林粮间作模式的识别(如核桃+小麦)
前沿解决方案:
星地协同计算:利用吉林一号星上AI实时初筛
多模态学习:融合社交媒体POI数据辅助判断
数字孪生:构建耕地用途知识图谱(如种植习惯库)