分类器评估与比较全解析
在机器学习领域,分类器的评估与比较是至关重要的环节,它直接影响到分类器的构建与选择。下面将详细介绍分类器评估与比较的相关内容。
1. 分类器评估指标
在二分类问题中,混淆矩阵是常用的工具,它能清晰展示分类结果。以下是二分类问题的混淆矩阵:
| | 预测为正 | 预测为负 |
| — | — | — |
| 正类 | 真正例(TP) | 假负例(FN) |
| 负类 | 假正例(FP) | 真负例(TN) |
ROC曲线是召回率(Recall)与假正率(FPrate,即1 - 特异度)的图形表示。ROC曲线下的面积(AUC)可作为分类性能的一个综合指标,它对类别分布的偏斜不太敏感,因为它是召回率和特异度之间的权衡。然而,近期研究表明,AUC本质上是一种不一致的度量,因为它对每个分类器的误分类成本处理方式不同,而误分类成本应是问题本身的属性,而非分类方法的属性。因此,有人提出了H度量作为AUC的替代方案。
上述这些指标适用于二分类的不平衡学习问题,部分指标还可经过修改以适应多分类的不平衡学习问题。例如,有人将G - 均值的定义扩展为每个类别的召回率的几何均值;还有人定义了多分类不平衡问题的平均F - 度量,该度量的主要优点是对类别分布和错误成本不敏感。但对于存在多个少数类和多个多数类的多分类场景,这些扩展指标是否适用仍是一个待解决的问题。另外,还有人提出了M度量,它是一种基于AUC固有特性聚合所有类别对的通用方法。
需要注意的是,这些指标仅关注分类器的性能评估,而分类还有其他重要方面,如对噪声的鲁棒性、可扩展性、数据偏移下的稳定性等,这些方面并未在这些指标中体现。
超级会员免费看
订阅专栏 解锁全文

被折叠的 条评论
为什么被折叠?



