IEEE智能交通系统汇刊,第22卷,第4期,2021年4月 2487
纯电动公交车部署的双目标优化:考虑成本与环境公平
周依蓉,电气与电子工程师协会成员,刘晓悦凯西,魏然,以及亚伦·戈卢布
摘要
过去几十年来,交通运输系统的可持续发展已成为全球共识。在对化石燃料清洁替代品的迫切需求推动下,车辆电气化以前所未有的速度推进。作为多模式交通系统的重要组成部分,公共交通在运营中率先采用电池技术。近年来,具备零排放、低噪音等优越特性的纯电动公交车(BEB)已具备商业化部署条件。然而,鉴于公共交通系统的特性以及纯电动公交车独特的时空特征,成功部署纯电动公交车系统仍面临巨大挑战。本研究提出了一种双目标优化模型,用于纯电动公交车部署,以考虑纯电动公交车系统特有的约束条件,并权衡弱势群体的环境公平与资本投资之间的关系。该模型进一步应用于犹他州交通管理局(UTA)运营的公共交通系统,以揭示纯电动公交车部署所带来的效益。本文提供了不同预算下的最优部署方案,以展示该模型的有效性,并对各方案中的权衡关系进行了深入讨论与比较。本研究为公交机构在需考虑多重目标时制定纯电动公交车系统的最优部署策略奠定了基础,有助于规划者和决策者构建更好地服务于宜居和可持续社区的交通运输生态系统。
Index Terms— 公共交通,纯电动公交车,环境公平性,充电站布局,双目标优化
一、引言
PUBLIC 公共交通系统是高效且环保地运送大规模人口的关键。与乘用车相比,公共交通能够有效节约能源、减少空气污染,并优化道路车流。在电池技术进步和对清洁能源需求日益增长的推动下,纯电动公交车(BEB)正受到越来越多的关注
公共交通车辆行业和公交机构对此的关注日益增加[1]–[3]。
Proterra、NewFlyers和比亚迪等汽车公司持续投资纯电动公交车相关技术。在过去八到十年间,这些公司已建立起成熟的纯电动公交车产品线以及配套的充电基础设施。加之电池价格下降,使得纯电动公交车的大规模商业部署成为可能。相应地,许多公交机构已制定长期和/或短期计划,以用纯电动公交车替换现有车队。洛杉矶县大都会交通运输局(LAMetro)于2017年7月宣布,其公交车队将在2030年前完成电动化,需要至少2,300辆纯电动公交车[4]。纽约大都会运输署城市公交系统于2018年2月开始在其系统中测试五辆NewFlyers纯电动公交车,类似的试点已在波士顿、波特兰、西雅图和盐湖城展开[4]。
由于纯电动公交车队可带来直接的环境和经济效益,如零排放、更低噪音、更低维护成本[5],[6],整个公交行业正迅速向纯电动公交车队转型。同时,公共交通系统高度依赖社会功能,尤其是在弱势群体依赖公共交通的地区,这些群体往往是特别容易受到空气污染影响的社会经济群体[7],[8]。全面电动化有望显著改善环境公平。
当前关于纯电动公交车的研究主要集中在能耗分析[9]–[11],、充电基础设施布局[12]–[17],、优化充电方案[16]–[19],、车队更新[20],[21]以及成本效益分析[3],[22]。
大多数研究针对小规模系统,仅考虑简化情况或假设,例如单条公交线路、固定数量的充电站或有限充电时间。对于基于实证数据的大规模纯电动公交系统有效部署规划,相关研究极为有限。此外,当缺乏实证数据时,许多研究采用模拟数据来验证其模型,这大大限制了模型被公交机构实际应用的可能性。除此之外,在优化纯电动公交车部署时,成本始终是主要关注点,而环境公平等重要目标却常常被忽视。
本研究开发了一种用于纯电动公交车战略部署的双目标时空优化模型。第一个目标是最小化购买纯电动公交车的成本同时安装沿途和场站内充电站,同时保持现有的公交时刻表。另一个目标是通过将弱势群体纳入决策过程来最大化环境公平性。关于社会脆弱性的研究发现,由于土地价值较低以及靠近收入机会,低社会经济地位(SES)群体往往面临更高浓度的空气污染物[23]。全球许多主要城市已开展了相关案例研究。例如,Bellet al.[24]研究了美国空气中颗粒物暴露所导致的环境不平等。他们使用连续七年(2000‐2006年)的每日空气污染测量数据,与2000年人口普查中的美国人口普查街区进行匹配。他们得出了类似的结论:社会经济地位较低的人群估计暴露水平更高。
Hajatet al.[25]和Fechtet al.[26]的其他研究也得出相似的结果。然而,也存在例外情况,例如纽约市,高社会经济地位群体受到更严重的空气污染影响。这些例外情况也在[25]和[26]中被指出。Hajatet al.[25]给出了一个可能的解释:景观视野和便捷的城市便利设施吸引了高社会经济地位个体居住在繁忙道路附近。因此,我们的基本假设之一是低收入群体往往更容易受到空气污染的影响。为此,在考虑最优纯电动公交车部署时,环境公平性通过以空气污染物浓度加权的弱势人群进行量化。该部署旨在确保那些低收入人群受不健康空气质量影响最严重的地方能够获得优先考虑。
总之,本文的主要贡献有两点:
我们开发了一个双目标时空优化模型,用于电动巴士的战略部署,以最小化购买纯电动公交车、沿途和场站内充电站的成本,并最大化弱势群体的环境公平性。该优化以时空方式考虑了纯电动公交车运营所带来的独特约束条件。
我们利用实证数据提出了一个潜在框架,公交机构可采用或扩展该框架,以兼顾公交机构设定的多个目标和目的,从而优化纯电动公交车的部署。
本文其余部分组织如下。下一节讨论与纯电动公交车部署相关的文献以及车辆电气化可能带来的环境效益。问题建模部分提出了双目标优化模型,并进一步结合实例讨论了变量、参数和约束条件的定义。应用部分分为两个子部分:数据来源和结果。在数据来源部分,介绍了犹他州空气质量数据、社会人口数据和交通网络数据的来源与结构。结果部分展示了所有参数的计算过程以及在不同预算下的三个部署方案。结论部分总结了本文的贡献并探讨了未来的研究方向。
II. 文献综述
电池技术的进步[2],[3]使得纯电动公交车的大规模采用成为实现可持续发展的一个可行解决方案
通勤。然而,与传统的柴油或压缩天然气(CNG)公交车相比,纯电动公交车(BEB)相关研究由于电池容量限制、高资本成本、受限行驶里程以及对充电基础设施的需求等挑战而面临新的难题。以往关于柴油或压缩天然气公交车的研究主要集中在公共交通服务的设计(如覆盖区域、调度)[27],[28]和/或公交车本身(如车队规模、载客率)[29]。这类研究对于纯电动公交系统仍然具有重要意义,因为纯电动公交车与柴油或压缩天然气公交车具有相同的功能,例如缓解交通拥堵、增加就业机会的可达性、降低公众的交通成本。然而,纯电动公交车在部署时还需考虑额外的约束条件。例如,Spasovic1et al[27].提出了一种优化公共交通服务覆盖范围的框架,在该框架中,他们试图寻找从中央商务区(CBD)向低密度郊区呈放射状延伸的公交线路的最佳长度,以及线路间距、发车间隔、票价等因素。对于纯电动公交车而言,除了上述因素外,还需仔细考察潜在的充电位置、充电时间、行驶里程等方面。
当以纯电动公交车为研究对象时,[28]也必须给予同样的考量。作者尝试在城市地区使用双层优化模型来优化公交站距。在这种情况下,一个自然的约束条件是:两个潜在充电站点之间的间距必须在纯电动公交车的行驶里程范围内。总之,解决纯电动公交车相关问题与解决传统公共交通问题类似,但需要额外考虑纯电动公交车所特有的特征。
尽管纯电动公交车(BEB)技术尚未完全成熟,且资本投资较高,但公共交通电气化正变得日益重要,并成为建设智慧城市不可或缺的组成部分[30]。BEB推动了充电设施、电池性能和自动驾驶等各个领域的研究[31]。此外,BEB还有潜力与电信、物联网、云计算等技术进步相融合[32]。在[31],中,作者描述了一种混合架构,该架构利用车载和基于云的模块对实时事件应用规则和策略。例如,系统可以根据公交车的当前状态和整体性能,检查最近充电站的可达性。
最近,许多研究集中在纯电动公交车相关问题上。大量研究探讨了与驾驶行为和电池使用分析相关的私人或替代燃料车辆的充电站布局[12],[14]。参考文献[6]提出了一种模型,通过在选定的公交站点最优部署电动汽车充电站,以最小化建设充电基础设施的总成本。该模型的有效性通过模拟数据得到了验证。类似的研究如[15],[33]也提出了充电站的选址方案,以最小化资本投资。车队更新问题已在[20]中进行了研究。然而,这些方法要么做了简化的假设,仅考虑成本进行优化,要么未考虑纯电动公交系统特有的时空特征。对于纯电动公交车而言,由于电池容量限制,其存在里程
约束,并需要通过沿线和/或场站内充电方式进行周期性充电。在任何公共交通系统中,公交运营线路和时刻表都是固定的。因此,纯电动公交车的引入必须无缝集成到现有线路和时刻表中(考虑到纯电动公交车的约束),以确保从柴油或压缩天然气公交车平稳过渡。这意味着纯电动公交车替换时的车辆与线路选择应考虑其时空特征,例如沿线充电的可用时间窗口、充电需求冲突以及公交行驶轨迹。
更重要的是,所有这些研究都假设用纯电动公交车完全替换整个车队,而现实中由于预算和分阶段规划的原因,公交机构通常更倾向于在不同阶段逐步替换部分车队。例如,[6]中提出的问题未考虑实际的公交时刻表。参考文献[13]仅考虑了有限数量的选定公交线路。[20]中的替换计划未考虑沿线和场站内充电站的位置要求。参考文献[21]允许部分替换公交车队,但未考虑除成本之外的其他因素。
另一类关于纯电动公交车的研究探讨了转型带来的环境效益。文献[22],[34]–[37]评估了温室气体排放的生命周期,以及空气污染物排放[38]。文献[34]研究了一种新方法,以一氧化碳2排放和电价成本为函数来优化充电时间。
文献[35]对不同电气化水平、充电方式以及内燃机燃料类型的城市场景下公交车的生命周期环境影响进行了评估。
除了与温室气体排放相关的研究外,意大利罗马的案例研究[38]还探讨了能源需求的变化以及由此产生的温室气体和空气污染物排放情况。
上述研究主要关注纯电动公交车部署相关的成本或环境效益。然而,公共交通规划需要考虑社会公平,特别是因为大多数公共交通依赖群体属于弱势人口[39]。这些人群往往居住在空气污染物浓度较高的地区,因此更容易受到空气污染的影响。通过在污染严重的社区用纯电动公交车替代柴油或压缩天然气公交车,可进一步改善潜在的环境和社会公平性。
如前所述,已有少数研究致力于充电站选址和车队更新问题,但其采用的简化假设可能不足以帮助公交机构以多阶段多目标方式最优地部署充电站并替换柴油或压缩天然气公交车。同时,那些关注纯电动公交车带来的环境效益的研究大多仅进行排放评估,忽视了纯电动公交车在环境公平和社会公平方面的贡献。为弥补这一空白,本研究建立了一个双目标模型,旨在帮助公交机构在考虑资本投资和环境公平的同时,最优地部署纯电动公交车。该模型还考虑并纳入了纯电动公交车系统的独特时空特性、充电限制(沿途和场站内充电)以及运营约束条件。
III. 问题表述
双目标模型基于以下符号表示:
索引:
i = index of buses (complete set I)
m = index of on-route charging stations (complete set M)
n = index of in-depot charging stations (complete set N)
s = index of bus terminal sequence
t = index of time sequence
参数:
Ei = environmental equity reached by replacing bus i
COm = cost of building one on-route charging station at m
CIn = cost of building one in-depot charging station at n
CB = cost of purchasing one BEB
pO = number of BEBs that one on-route charging station can charge simultaneously
pI = number of BEBs that one in-depot charging station can charge simultaneously
li,s−1,s = route distance between terminals s and s−1 for bus i
R = driving range for BEB without charging
TDi = total driving distance for bus i in one day
αm = set of bus terminal sequence at m
βmt = set of sequences for bus arriving at m and time t
γn = set of buses charged at n overnight
决策变量:
Xis = {1 if bus i is charged at s, 0 otherwise}
YOm = number of on-route charging stations built at m
YIn = number of in-depot charging stations built at n
Zi = {1 if bus i is replaced with BEB, 0 otherwise}
Dis = distance traveled by bus i at sequence s
对于一个典型的工作日,一辆柴油或压缩天然气公交车(以
表示)会经过一系列终点站(以
表示)。在所有序列中,满足特定约束条件的序列可被视为建设沿线充电站的潜在站点(以
表示)。用于夜间充电的车库以
表示。公交车
在任意终点站的到达时间以
表示。
以特定公交车i为例,公交车i在时刻t1从终点站w1出发,经过时刻t2到达终点站w2,再于时刻t3抵达终点站w3。随后,公交车i在时刻t4到达终点站w4,并返回至终点站w1,到达时间为t5。公交车i每天重复该行程五次。其所达到的环境公平标记为Ei。Ei的计算方式如下。
以各终点站为中心、半径为一英里的服务覆盖区域 w1, w2, w3和w4被创建。该半径设定用于表示大多数行人愿意步行至公交站点的最大距离。在以往的研究中,服务覆盖区域的半径范围从四分之一英里到1.5英里不等[7],[40]–[42],,结果表明,改变半径大小对基于周边特征(如人口、就业岗位等)预测客流量的能力影响甚微。
本文采用一英里半径来计算每个公交站点周围的环境公平,该中位数值来源于先前的研究。一英里半径大致相当于行人以每小时3英里的速度在20分钟内可步行的距离,到达或离开公交站点。本文采用此范围,用以表示大多数弱势群体在往返公交站点途中暴露于空气污染物的地理区域。
因此,以w1, w2, w3和w4为中心的四个覆盖区域的并集构成了公交车辆i的影响区域。Ei被计算为该区域内低收入人口×污染物浓度。
在m处的到站序列表示为 αm,在上述示例中,假设 w1是建设沿线充电站的潜在站点,αw1是{(i,s= 1),(i,s= 5)}。这表示公交车i在终点站w1停靠两次。站点顺序分别为1和5。βmt是 αm的一个子集,代表时间t时的终点站序列集合。在相近时间t到达的公交车(以时间点t为中心、长度为10分钟的时间缓冲区,即[t−5,t+5])被视为相互冲突,意味着它们需要同时充电。R是某种纯电动公交车在无需充电情况下的续航里程。TDi是公交车i的累计里程。li,s−1,s是从终点站s−1到终点站s的实际行驶距离。
二元决策变量Xis表示公交车i是否在终点站s充电。
Dis表示公交车i在未于终点站s充电情况下的总行驶距离。
如果公交车i在终点站m0,充电,则Xim0等于1,且Dim0被设为零。二元决策变量Zi表示公交车i是否被替换为纯电动公交车。整数决策变量Y O m和Y I n分别表示在站点m建设的沿途充电站数量以及在站点n建设的场站内充电站数量。
考虑到纯电动公交车(BEB)独特的时空特征以及探索成本与环境公平性之间权衡的目标,问题的表述如下:
双目标纯电动公交车部署问题(BOBEBD)
目标:
max ∑i EiZi (1)
min (∑i CB Zi + ∑m COm YOm + ∑n CIn YIn) (2)
Subject to
Di,s−1 + li,s−1,s ≤ R + (1 − Zi) TDi (3)
Di,1 = 0, ∀i (4)
Di,s ≤ Di,s−1 + li,s−1,s, ∀i, s ≥ 2 (5)
Di,s ≥ Di,s−1 + li,s−1,s − TDiXis, ∀i, s ≥ 2 (6)
Di,s ≤ (1 − Xis) TDi, ∀i, s ≥ 1 (7)
Xis ≤ YOm, ∀m, (i, s) ∈ αm (8)
Xis ≤ Zi, ∀i, s (9)
∑(i,s)∈βmt Xis ≤ pOY Om ∀m, t (10)
∑i∈γn Zi ≤ pI YIn ∀n (11)
Xis = 0 or 1, ∀i, s
Zi = 0 or 1, ∀i
Y Om and Y In are positive integers
Dis ≥ 0, ∀i, s (12)
目标(1)是最大化环境公平性,目标(2)是最小化购买纯电动公交车和建设充电站的总成本。约束条件(3)确保纯电动公交车在充电前的行驶里程不超过其最大行驶里程。约束条件(4)确保每天开始时累计里程设为零。约束条件(5)和(6)共同决定:如果在站点s未进行充电,则公交车i在站点s的累积行驶距离等于其在站点s − 1的累积行驶距离加上站点s − 1与站点s之间的路线距离。约束条件(7)规定,如果公交车i在站点s进行了充电,则设置Xis为零。约束条件(8)确保只有在某站点建有沿线充电站的情况下,纯电动公交车才可在该站点充电。约束条件(9)解除柴油或压缩天然气公交车的行驶限制,并确保仅纯电动公交车可以充电。约束条件(10)确保有足够的沿线充电位以支持同时充电,而约束条件(11)满足夜间场内充电的需求。约束条件(12)描述了决策变量的性质。
总之,这些约束条件共同作用,确保有资格的公交车被替换为BEB,以完成现有的指定路线和班次安排。
BOBEBD并非易事。不存在能够同时优化两个目标的单一解决方案。显然,增加预算很可能会导致更多的纯电动公交车部署,从而改善环境公平。为了寻求具有实际价值的解决方案,此处应用了约束方法[43]。因此,目标(2)被视为一个新的约束条件:
min (∑i CB Zi + ∑m COm YOm + ∑n CIn YIn) ≤ Cx (13)
Cx 是一个可手动选择的变量,用于表示施加在整个系统上的实际预算。对于Cx的特定取值,BOBEBD将转化为一个单目标混合整数规划(MIP)问题,可通过 Gurobi、Cplex、GLPK等求解器进行求解。我们可以通过改变Cx 来量化环境公平相应的变化情况,并观察不同的部署方案,包括需要替换的公交车、数量以及充电站的建设位置。
四、应用
A. 数据来源
本文的研究动机源于犹他州交通管理局(UTA)需要评估未来几年内多种纯电动公交车部署方案的可行性。
BOBEBD旨在探索在分阶段替换系统时降低成本的可能性,同时最大化环境公平性结果。UTA负责为美国犹他州瓦萨奇前线地区提供公共交通服务,覆盖奥格登、帕克城、普罗沃、盐湖城和图埃勒等大都市区。自1970年3月3日成立以来,UTA持续扩展其网络。目前,该机构的服务覆盖区域为220万人口,约占全州总人口的79%。2016年,UTA在典型工作日运营467辆柴油或压缩天然气公交车,服务于121条线路。本研究使用了2016年的交通网络数据。
许多公交车每天在两条或更多线路上运行(跨线运营),以通过灵活匹配司机和公交车的时刻表来提高运营效率。
本研究考虑的纯电动公交车(BEB)具体型号为新飞翔者XE40,目前有5辆正在盐湖城和犹他大学校园提供服务。文中引用的参数均来自其运营数据。根据当前运营情况,XE40在冬季的行驶里程范围为62英里至200英里,在夏季则为75英里至294英里,具体取决于电池使用强度。
在冬季,电池能耗主要来自电机和电加热器。根据2020年1月1日至2020年1月15日的运营记录,电加热器可能占到50%的电池能耗。
这显著影响了完全充电后的行驶里程。在夏季,空调也会消耗大量电池电量,但在最极端的情况下也低于50%。此外,考虑到犹他州多条线路的海拔上升情况,本研究采用了一个保守假设,即续航里程为62英里。在此假设下,在总共467辆公交车中,有114辆公交车的日行驶里程小于62英里,表明这些车辆无需沿线充电;同时有51辆公交车由于站点间距离过长,会在到达充电点前耗尽电量。
XE40采用沿线充电的标准充电时间为10至13分钟。本研究未考虑部分充电的情况。因此,只有公交车停靠时间超过10分钟的终点站才被视为建设沿线充电站的潜在站点。由此确定研究区域内共有71个潜在充电站,瓦萨奇前线的四个公交场站被认定为具备夜间充电条件的场站内充电站,且无空间限制(图1)。在工作日由UTA运营的其余302辆公交车中,有82辆无法充满电,因为它们在任何终点站的停靠时间均少于10分钟,这意味着根据当前参数,这些车辆不具备更换条件。最终共有220辆公交车需要场站内充电和沿线充电。
总之,在BOBEBD中考虑了334辆(220+ 114)公交车。根据UTA,一个场站内充电站最多可同时为3辆公交车充电,而一个沿线充电站一次只能为一辆公交车充电。
场站内充电站和沿线充电站的建设成本分别为35万美元和100万美元。购买一辆XE40的成本为79万美元。
为了模拟纯电动公交车部署所带来的环境公平性结果,需要收集空气质量人口数据。我们从PurpleAir[44]获取此类信息。PurpleAir是一个基于新一代激光颗粒计数器构建的空气质量监测网络,可提供PM1.0、PM2.5和 PM10的实时测量。PurpleAir传感器主要安装在欧洲和北美地区,在犹他州分布有超过400个公开的传感器。
PurpleAir的数据流每5分钟提供一次颗粒物(PM1.0、PM2.5、PM10)浓度的实时数据和周平均值。在犹他州,PurpleAir传感器高度集中在城市化地区,如盐湖城。
道路交通产生的主要污染物,如NOx和CO,并未被用作指标,因为本研究的重点并非道路车辆排放,而是优先在空气状况最差的地区部署纯电动公交车(BEBs),以惠及暴露于恶劣空气环境中的低收入人群。为此,本研究将PM2.5浓度(ug/m³)作为空气污染水平的指标。选择PM2.5作为空气质量衡量标准的原因是,大盐湖地区因 PM2.5问题已被环境保护署连续十一年列为未达标区域,自 2009[45]年以来一直如此。我们收集了2019年10月1st日至10月14th期间犹他州境内所有监测站点的PM2.5浓度数据,并计算了每个站点的平均值。随后对数据进行了进一步处理
低收入人口数据来自犹他州大都市规划组织(MPOs)的2019年数据。所有家庭首先根据2010年人口普查的收入分组划分为四组。其中,收入组1(0至34999美元)被认定为犹他州的低收入群体。TAZ级别的低收入人口分布如图3所示。需要注意的是,使用人口普查数据时可能会出现一些问题。首先,假设交通分析区(TAZ)内的人口呈均匀分布。在缺乏土地利用和兴趣点等附加信息的情况下,该假设可能导致对Ei的高估或低估。此外,仅考虑基于居民的指标(例如低收入居民)也可能低估服务人口的数量,因为在特定区域使用公共交通服务的人数可能与该区域的实际居住人口数量并不一致。尽管已有研究(如[7],)证实了低收入人群在出行和日常活动方面高度依赖公共交通这一基本假设成立,但将基于居住的数据与土地利用或其他详细的人类活动数据相结合,可进一步提高估算的准确性。
B. 结果
在求解BOBEBD之前,Ei,即通过替换公交车i实现的环境公平,需要进行计算。注意图2中PurpleAir监测站点在犹他州的地理区域上分布不均,因此需要进行数据处理,以插值得到整个地理区域上的PM2.5数值。
此处应用序贯克里金法[46]生成PM2.5浓度的平滑表面。克里金法是一种插值方法,其插值结果通过高斯过程建模。
本研究中选用高斯半变异模型,并需指定克里金法的像元大小。由于低收入人口数据按交通分析区(TAZ)进行汇总,因此调整像元大小,以确保每个TAZ至少包含一个由克里金法生成的栅格质心。对于UTA网络,像元大小设为600英尺。图4显示了按交通分析区划分的平均PM2.5浓度结果。比较图3和图4可知,大多数低收入人群居住在PM2.5浓度较高的交通分析区内。例如,在PM2.5浓度最高的盐湖城市中心,存在一组低收入人口较多的交通分析区,占研究区域低收入总人口的50%以上。此外,大盐湖以东地区也表现出类似模式,低收入人群集中在PM2.5浓度较高的区域。
相应地,可以计算TAZj的PM2.5平均浓度,其中j为交通分析区的索引。TAZj中的PM2.5浓度记为PMTAZj,TAZj中的人口记为POPTAZj。然后,按PM2.5浓度加权的低收入人口计算为:
WP OPT A Z j= PMT A Z j × P OPT A Z j (14)
以犹他州205路公交线路为例,演示E i的计算过程。图 5显示了205路公交线路的站点、线路走向、影响区域以及交通分析区。假设公交车i在行程h期间运营于205路公交线路。
其中,h为行程的索引。在行程h中,公交车i依次经过 W个站点,如图5中的灰色点所示。在每个W站点处创建一个1英里半径的服务覆盖区域。然后获取这W个覆盖区域的并集,记为U h i 。U h i 即为图5中蓝色区域,表示205路公交线路的影响区域。随后,U h i 与所有交通分析区( TAZs)进一步求交集。其边界为交通分析区和U h i生成用于计算加权人口的单位。由此可以计算出TAZj在U h i中所占的比例,该比例称为Proph i(TAZj)。
由TAZj贡献的加权人口按此方式计算:
Proph i(TAZj)×WP OPT A Zi (15)
然后,对于在205路线上运行并经过多个交通分析区(完整集合h J)的特定行程,该指标计算为:
∑j ∈J Proph i(TAZj)× WP OPT A Zi (16)
由于公交车i在工作日多次运营205路公交线路,因此该公交车i在工作日完成的全部班次集合记为H。然后,
Ei=∑
h∈H
∑
j ∈J
WP OPT A Zi×Prop h i(TAZj) (17)
与所有公交车相关的Ei分布如图6所示。与大多数公交车相关的Ei低于25,000ug/m³,,占整个车队总量的90% 以上。
沿线充电站的潜在位置(M)、场站间路线距离(li,s−1,s)、终点站m处的公交线路序列(αm)、在时间t附近终点站 m的公交冲突集(βmt)以及其他所有标注均使用Python 2.7进行处理。优化模型采用Gurobi[47]求解。计算在配备AMDRyzen73700X8核处理器、16GB内存和 Windows10操作系统的计算机上完成。
通过引入针对不同Cx的约束条件(13)来求解BOBEBD。
目的是识别通过替换纯电动公交车实现的环境公平与成本之间的权衡关系。Cx可被合理解释为受资金可用性限制的预算。
通过调整Cx可以呈现不同的部署方案。每个方案在给定固定的Cx的情况下,都会产生充电站和替换的公交车的位置集合,以及所能达到的最大环境公平性。图7显示了每个独特方案所产生的预算Cx与环境公平性之间的权衡曲线。预算与环境公平性之间存在明显的正相关关系。随着预算的增加,可用于替换的公交车数量也随之增加
随着沿途和场站内充电站数量的增加而上升。
共有334(220+ 114)辆公交车可进行替换,其中114辆无需建设沿途充电站。能够实现最大环境公平性的情景是所有公交车替换为BEB。该情景需要建设46个沿途充电站和112个场站内充电站。BEB及充电站的总成本为3.35366亿美元,达到的环境公平性为5.76× 10⁶ug/m³。
图8显示了预算设定为2500万美元时的部署方案,该预算约为替换所有公交车总成本的13%。实现的环境公平为2.75×10⁶ ug/m³,约为该情景下环境公平的47.7%。当Cx=低于2500万美元时,共替换26辆公交车,建设2个沿途充电站和9个场站内充电站。这26辆公交车均需沿线充电,服务11条线路,线路距离范围为6.88英里至18.90英里,平均为11.48英里。两个沿途充电站分别位于西谷中央站(3650南2880西)和米尔克里克(瓦萨奇大道3900南)。公交车的日行驶里程范围为161.89英里至263.33英里,平均为202.98英里。值得一提的是,Ei与这26辆公交车相关联的数值在所有公交车中排名前13%,在Ei中的排名范围为第13th至第61st(共467辆公交车)。未选择Ei最高的公交车的原因在于,这些公交车通常运行更长线路,需要一个或多个沿途充电站,且前20%的公交车之间的Ei差异并不显著。
如果Cx= 6000万美元,将有63辆公交车替换为 BEB,同时建设5个沿途充电站和21个场站内充电站。图9展示了实际部署方案。该方案带来4.44 × 10⁶ug/m³的环境公平性结果,达到系统可能实现的总环境公平性的77.1 %。5个沿途充电站中有2个建在米尔克里克(瓦萨奇大道与3900南交汇处),其余3个分别位于西谷中央站(3650南2880西)、北庙站(490西240北)和盐湖中央站(300南600西)这三个不同的终点站。替换的63辆BEB服务于20条线路,线路距离范围从5.45英里到18.90英里,平均为10.63英里。63辆公交车的日行驶里程范围为62.78英里至263.33英里,平均为176.20英里。
此外,如果预算提高到1.2亿美元,则将替换122辆公交车,并建设14个沿途充电站和41个场站内充电站,由此实现的环境公平达到总量的95.7%,即5.51 × 10⁶ug/m³。如图10所示,这14个沿途充电站分布在米尔克里克、西谷城、盐湖城、南盐湖城、桑迪、南奥格登、奥勒姆和默里地区。所替换的122辆公交车服务于32条线路,线路距离范围为5.45英里至23.15英里,平均为11.53英里。这122辆公交车的日行驶里程范围为62.78英里至263.33英里,平均为170.52英里。值得注意的是,由于能够带来最大环境公平效益的公交车已包含在最初的63辆纯电动公交车中,因此继续增加替换的纯电动公交车所带来的环境公平提升效果显著下降。如果进一步将预算提高到2亿美元,则可达到总环境公平的99.3%,届时将替换203辆公交车,并建成24个沿途充电站和68个场站内充电站。
V. 讨论与结论
在诸多值得讨论的发现中,第一个是预算与环境公平性结果之间权衡曲线的形状。图7显示,随着预算持续增加,环境公平性的改善呈对数尺度变化。这是由于如图6所示,不同公交车之间的Ei存在显著差异。一些公交车行驶的路线穿过人口最密集的区域,一天内多次经过人口密集的交通分析区,而其他车辆可能途经人口很少的交通分析区。这种情况导致BOBEBD几乎总是倾向于选择人口密集线路上的公交车。当Cx= 2500万美元时,所选的26辆公交车都需要沿途和场站内充电,因为它们通常比仅需场站内充电的114辆公交车运行更长线路和更长时间。
BOBEBD展示了如何根据公交机构提出的多种需求和目标,结合纯电动公交车独特的时空特征来构建部署问题。
该模型可进一步扩展,以纳入除预算和环境公平之外的其他目标,例如最大化服务区域、能源效率、系统鲁棒性等。
例如,系统鲁棒性可以定义为在对当前公交运营线路和时刻表无影响或影响最小的情况下,允许发生故障的公交车数量。在这种情况下,每日运行次数较少、服务路线较少且在终点站停留时间较长的车辆可能是最佳选择。不同阶段也可优先考虑不同目标。例如,在初期阶段(如10%车队替换为BEB),目标可以是最大化服务覆盖区域,以便从社区收集反馈;而在中期阶段(如35%车队替换为BEB),目标则可以是最大化环境公平性,正如本文所示。
BOBEBD的灵活性使得公交机构能够根据其短期和长期目标以及具体要求,做出规划层面的决策。
此外,还有很大的改进空间。目前,我们仅考虑了购买纯电动公交车和建设充电站的成本。如果数据可用,维护成本在纯电动公交车与柴油或压缩天然气公交车之间的差异以及特定公交车的残值也可以纳入目标(2)中。另外,正如我们在数据来源部分提到的,仅考虑基于居民的指标(例如低收入居民)可能会低估服务人口的数量。未来的 工作将重点结合基于居住地的数据与土地利用或其他详细的人类活动数据,以提高估计精度。同时,如前所述,不允许部分充电,只有公交车停留时间超过10分钟的终点站才有资格作为建设沿线充电站的潜在站点。这一特征与实际情况并不完全一致。根据盐湖城当前的电动巴士运营数据显示,在超过50%的情况下,纯电动公交车在途中充电时电池电量仍至少保持在总电量的30%以上。因此,需要更准确地评估充电最短时间,以便做出不那么保守的假设。
随着新技术的出现,例如无线充电系统,BOBEBD也需要相应的改进。
纯电动公交车的部署是一个复杂的过程,对公共交通系统产生巨大影响,需要巨额资本投资、全面的可行性研究和周密的规划。从建模角度来看,纯电动公交车的参数以及沿途和场站内充电站的规格(如充电能力、充电时间)决定了哪些公交车可被替换以保持运营的可行性,相同的路线和时刻表。我们所作的假设(例如不进行部分充电)也可能极大地影响沿线充电站的分配。本研究通过引入多个目标(成本与环境公平性),推动了纯电动公交车部署领域的前沿发展。结合使用空气污染数据、社会人口数据、地理信息系统(GIS)以及优化技术,为公交机构提供了切实可行的战略部署方案。BOBEBD使公交机构能够平衡资本投资与环境公平性,并在进一步应用过程中,制定不同阶段部署的多种目标。本研究为公交机构利用灵活且易于解释的优化模型制定纯电动公交车部署的多阶段规划奠定了基础。
978

被折叠的 条评论
为什么被折叠?



