题目如下:
一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。
现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?
网格中的障碍物和空位置分别用 1
和 0
来表示。
说明:m 和 n 的值均不超过 100。
示例 1:
输入:
[
[0,0,0],
[0,1,0],
[0,0,0]
]
输出: 2
解释:
3x3 网格的正中间有一个障碍物。
从左上角到右下角一共有 2 条不同的路径:
1. 向右 -> 向右 -> 向下 -> 向下
2. 向下 -> 向下 -> 向右 -> 向右
利用动态规划和空间压缩方法
class Solution {
public int uniquePathsWithObstacles(int[][] obstacleGrid) {
if (obstacleGrid == null || obstacleGrid.length == 0) {
return 0;
}
int row = obstacleGrid.length;
int col = obstacleGrid[0].length;
if(obstacleGrid[0][0] == 1 || obstacleGrid[row-1][col-1] ==1 ) {
return 0;
}
int[] dp = new int[col];
dp[0] = 1;
for (int i = 1; i < col; i++) {
if (dp[i - 1] == 0 || obstacleGrid[0][i] == 1) {
dp[i] = 0;
} else {
dp[i] = 1;
}
}
for (int i = 1; i < row; i++) {
if (dp[0] == 1 && obstacleGrid[i][0] == 0) {
dp[0] = 1;
}else {
dp[0] = 0;
}
for (int j = 1; j < col; j++) {
if (obstacleGrid[i][j] == 1) {
dp[j] = 0;
} else {
dp[j] = dp[j - 1] + dp[j];
}
}
}
return dp[col - 1];
}
}