不同路径算法

题目如下:

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。

现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?

网格中的障碍物和空位置分别用 1 和 0 来表示。

说明:m 和 的值均不超过 100。

示例 1:

输入:
[
  [0,0,0],
  [0,1,0],
  [0,0,0]
]
输出: 2
解释:
3x3 网格的正中间有一个障碍物。
从左上角到右下角一共有 2 条不同的路径:
1. 向右 -> 向右 -> 向下 -> 向下
2. 向下 -> 向下 -> 向右 -> 向右

利用动态规划和空间压缩方法

class Solution {

    public int uniquePathsWithObstacles(int[][] obstacleGrid) {

        if (obstacleGrid == null || obstacleGrid.length == 0) {

            return 0;

        }

        int row = obstacleGrid.length;

        int col = obstacleGrid[0].length;

        if(obstacleGrid[0][0] == 1 || obstacleGrid[row-1][col-1] ==1 ) {

            return 0;

        }

        int[] dp = new int[col];

        dp[0] = 1;

        for (int i = 1; i < col; i++) {

            if (dp[i - 1] == 0 || obstacleGrid[0][i] == 1) {

                dp[i] = 0;

            } else {

                dp[i] = 1;

            }

        }

        for (int i = 1; i < row; i++) {

            if (dp[0] == 1 && obstacleGrid[i][0] == 0) {

                dp[0] = 1;

            }else {

                dp[0] = 0;

            }

            for (int j = 1; j < col; j++) {

                if (obstacleGrid[i][j] == 1) {

                    dp[j] = 0;

                } else {

                    dp[j] = dp[j - 1] + dp[j];

                }

            }

        }

        return dp[col - 1];        

    }

}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值